大语言模型推理与部署工具介绍

推理与部署

本项目中的相关模型主要支持以下量化、推理和部署方式,具体内容请参考对应教程。

工具 特点 CPU GPU 量化 GUI API vLLM§ 16K‡ 教程
llama.cpp 丰富的量化选项和高效本地推理 link
🤗Transformers 原生transformers推理接口 link
Colab Demo 在Colab中启动交互界面 link
仿OpenAI API调用 仿OpenAI API接口的服务器Demo link
text-generation-webui 前端Web UI界面的部署方式 ✅† link
LangChain 适合二次开发的大模型应用开源框架 ✅† ✅† link
privateGPT 基于LangChain的多文档本地问答框架 link
相关推荐
Hody9116 分钟前
【XR硬件系列】夸克 AI 眼镜预售背后:阿里用 “硬件尖刀 + 生态护城河“ 重构智能穿戴逻辑
人工智能·重构
Icoolkj19 分钟前
RAGFlow与Dify知识库:对比选型与技术落地解析
人工智能
终端域名23 分钟前
转折·融合·重构——2025十大新兴技术驱动系统变革与全球挑战应对
人工智能·重构
FreeCode25 分钟前
LangChain1.0智能体开发:中间件(Middleware)
人工智能·langchain·agent
黑黑的脸蛋26 分钟前
Cursor 自动化批量修改大量代码场景
人工智能·程序员
智启七月1 小时前
从 token 到向量:微信 CALM 模型颠覆大语言模型范式
人工智能·深度学习
老纪的技术唠嗑局1 小时前
AI 时代的数据库进化论 —— 从向量到混合检索
人工智能
Better Bench1 小时前
【大模型RAG安全基准】安装和使用SafaRAG框架
网络·人工智能·安全·大模型·组件·rag
大千AI助手1 小时前
差分隐私:机器学习和数据发布中的隐私守护神
人工智能·神经网络·机器学习·dp·隐私保护·差分隐私·大千ai助手
R-G-B1 小时前
【P27 回归算法及应用实践】有监督的机器学习、分类与回归、一元线性回归、最小二乘法、多元回归与梯度下降、学习率
人工智能·回归·最小二乘法·梯度下降·一元线性回归·有监督的机器学习·分类与回归