什么是卷积002

文章目录

前言

大纲目录

首先链接图像颜色通道


1.卷积网络和传统网络区别

右边的就是CNN,卷积神经网络,是个三维的,hw c.

传统的是平面的。

2.卷积神经网络整体架构

1.输入层

2. 卷积层

卷积就是特征提取,边界的特征和猫脸的特征重要程度不一样。

下面是一个颜色通道图

这是三通道做卷积,三个卷积核33 3,卷积核矩阵也不一样,都是做内积,所有结果相乘,结果加起来

想一下,为什么输出是33 2?

这是因为有两个卷积

这个图和上面的图差不多,我们可以采用两个卷积核去提取特征

这里使用了6个

这里使用了n个

卷积最重要的是卷积矩阵,不同小区,特征值是不一样的。

这个就是三通道加起来

下面就是

卷积要做多少次?

卷积后,大小不一定变换

3.池化层

其实就是下采样

就是找一个最大值

4.全连接层

其实就是做了很多卷积,只不过卷积核和原图大小一样大,做成一个一维的特征向量

5.神经网络

每一个卷积,加一个relu,两次卷积一次池化

全连接层,32**32*10,如果有5个类别,那么就是【10240,5】

6.经典网络

1.Alexnet

2. Vgg

3.Resnet 残差网络-特征提取

分类和回归跟损失函数有关。

层数越大,error越大。

如何解决?

如下图,经过两层卷积后,结果不好,我们再加一条路,到时候就把后面的两层给去掉,权重参数全部设置为0.,加了这条路就有了一个保底的路径。学习完之后,不比原来的差。

这样就可以做到1k层。

7.感受野

最后的那个值是最开始几个数值的综合。

相关推荐
武子康6 小时前
大语言模型 11 - 从0开始训练GPT 0.25B参数量 MiniMind2 准备数据与训练模型 DPO直接偏好优化
人工智能·gpt·ai·语言模型·自然语言处理
武子康11 小时前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
无声旅者15 小时前
深度解析 IDEA 集成 Continue 插件:提升开发效率的全流程指南
java·ide·ai·intellij-idea·ai编程·continue·openapi
武子康1 天前
大语言模型 09 - 从0开始训练GPT 0.25B参数量 补充知识之数据集 Pretrain SFT RLHF
人工智能·gpt·ai·语言模型·自然语言处理
豌豆花下猫1 天前
Python 潮流周刊#102:微软裁员 Faster CPython 团队(摘要)
后端·python·ai
zhz52141 天前
AI数字人融合VR全景:开启未来营销与交互新篇章
人工智能·ai·交互·vr·ai编程·智能体
一叶茶1 天前
VsCode和AI的前端使用体验:分别使用了Copilot、通义灵码、iflyCode和Trae
前端·vscode·gpt·ai·chatgpt·copilot·deepseek
小薛博客1 天前
4、前后端联调文生文、文生图事件
java·ai
LucianaiB2 天前
使用GpuGeek高效完成LLaMA大模型微调:实践与心得分享
ai·llama·ai自动化·gpugeek
素雪风华2 天前
构建RAG混合开发---PythonAI+JavaEE+Vue.js前端的实践
java·vue.js·python·ai·语言模型·llms·qwen千问大模型