Pytorch 神经网络搭建步骤

文章目录

python 复制代码
import numpy as np
import torch
from PIL.Image import Image
from torch.autograd import Variable

# 获取数据
def get_data():
    train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.537,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    dtype=torch.FloatTensor
    X=Variable(torch.from_numpy(train_X).type(dtype),requires_grad=False).view(17,1)
    y=Variable(torch.from_numpy(train_Y).type(dtype),requires_grad=False)
    return X,y
# 随机参数
def get_weights():
    w=Variable(torch.randn(1),requires_grad=True)
    b=Variable(torch.randn(1),requires_grad=True)
    return w,b
w,b=get_weights()
# 模型计算
def simple_network(x):
    y_pred=torch.matmul(x,w)+b
    return y_pred
# 计算损失进行评估
def loss_fn(y,y_pred):
    loss=(y_pred-y).pow(2).sum()
    for param in [w,b]:
        if not param.grad is None:param.grad.data.zero_()
        loss.backward()
        return loss.data[0]
# 优化网络
def optimize(learning_rate):
    w.data-=learning_rate * w.grad.data
    b.data-=learning_rate * b.grad.data
from torch.utils.data import Dataset
class DogsAndCatsDataset(Dataset):
    def __init__(self,root_dir,size=(224,224)):
        self.files=globals(root_dir)
        self.size=size
    def __len__(self):
        return len(self.files)
    def __getitem__(self, item):
        img=np.asarray(Image.open(self.files[item]).resize(self.size))
        label=self.files[item].split('/')[-2]
        return img,label
class myFirstNetwork(torch.nn.Module):
    def __init__(self,input_size,hidden_size,output_size):
        super(myFirstNetwork,self).__init__()
        self.layer1=torch.nn.Linear(input_size,hidden_size)
        self.layer2=torch.nn.Linear(hidden_size,output_size)
    def __forward__(self,input):
        out=self.layer1(input)
        out=torch.nn.ReLU(out)
        out=self.layer2(out)
        return out
相关推荐
救救孩子把4 分钟前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL17 分钟前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
Wulida00999117 分钟前
建筑物表面缺陷检测与识别:基于YOLO11-C3k2-Strip模型的智能检测系统
python
呆萌很23 分钟前
HSV颜色空间过滤
人工智能
FJW02081433 分钟前
Python_work4
开发语言·python
roman_日积跬步-终至千里37 分钟前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631291 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛111 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature1 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能
yaoh.wang1 小时前
力扣(LeetCode) 88: 合并两个有序数组 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针