cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

python 复制代码
indices = cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

这行代码是调用 OpenCV 的 cv.dnn.NMSBoxes 函数来执行非最大抑制(Non-Maximum Suppression, NMS)算法,这是一个常用的后处理步骤,用于消除多余的重叠检测框。下面我将解释该函数的每个参数和其工作方式:

1. bbox

bbox 是一个列表,包含了所有检测到的边界框。每个边界框都是一个列表,包含四个元素:

x,y,w,h,分别表示边界框的左上角坐标(x, y)和边界框的宽度(w)和高度(h)。

2. confs

confs 是一个列表,包含了每个边界框的置信分数。这个分数表示模型对该边界框中包含对象的置信程度。

3. self.confThreshold

self.confThreshold 是一个阈值,用于过滤掉置信分数低于该阈值的所有边界框。只有置信分数高于此阈值的边界框才会被考虑进NMS算法。

4. self.nmsThreshold

self.nmsThreshold 是另一个阈值,用于NMS算法。如果两个边界框的交并比(Intersection over Union, IoU)大于此阈值,则保留置信分数更高的边界框,并消除另一个。

5. NMS 算法

NMS算法工作流程如下:

从所有边界框列表中选取置信分数最高的边界框。

计算此边界框与其他所有边界框的IoU。

如果任何其他边界框的IoU超过了self.nmsThreshold,则将其删除。

重复步骤1-3,直到所有边界框都被检查。

6. 返回值

函数返回一个indices列表,包含了经过NMS算法后保留下来的边界框的索引。

通过使用NMS,你可以减少多余的检测,并保留最有可能代表实际对象的边界框。

相关推荐
lypzcgf2 分钟前
Coze源码分析-资源库-删除插件-后端源码-错误处理与总结
人工智能·后端·go·coze·coze源码分析·ai应用平台·agent平台
xiaopengbc6 分钟前
在 Python 中实现观察者模式的具体步骤是什么?
开发语言·python·观察者模式
AIGC小火龙果8 分钟前
OpenAI的开源王牌:gpt-oss上手指南与深度解析
人工智能·经验分享·gpt·搜索引擎·aigc·ai编程
新智元10 分钟前
狂登热搜,iPhone 17「挤爆牙膏」!5999 起价,AirPods 变身同声传译
人工智能·openai
Python大数据分析@11 分钟前
python用selenium怎么规避检测?
开发语言·python·selenium·网络爬虫
ThreeAu.14 分钟前
Miniconda3搭建Selenium的python虚拟环境全攻略
开发语言·python·selenium·minicoda·python环境配置
SHUIPING_YANG20 分钟前
如何让dify分类器更加精准的分类?
人工智能·分类·数据挖掘
偷心伊普西隆23 分钟前
Python EXCEL 理论探究:格式转换时处理缺失值方法
python·excel
星期天要睡觉23 分钟前
计算机视觉(opencv)——基于模板匹配的身份证号识别系统
人工智能·opencv·计算机视觉