cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

python 复制代码
indices = cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

这行代码是调用 OpenCV 的 cv.dnn.NMSBoxes 函数来执行非最大抑制(Non-Maximum Suppression, NMS)算法,这是一个常用的后处理步骤,用于消除多余的重叠检测框。下面我将解释该函数的每个参数和其工作方式:

1. bbox

bbox 是一个列表,包含了所有检测到的边界框。每个边界框都是一个列表,包含四个元素:

x,y,w,h,分别表示边界框的左上角坐标(x, y)和边界框的宽度(w)和高度(h)。

2. confs

confs 是一个列表,包含了每个边界框的置信分数。这个分数表示模型对该边界框中包含对象的置信程度。

3. self.confThreshold

self.confThreshold 是一个阈值,用于过滤掉置信分数低于该阈值的所有边界框。只有置信分数高于此阈值的边界框才会被考虑进NMS算法。

4. self.nmsThreshold

self.nmsThreshold 是另一个阈值,用于NMS算法。如果两个边界框的交并比(Intersection over Union, IoU)大于此阈值,则保留置信分数更高的边界框,并消除另一个。

5. NMS 算法

NMS算法工作流程如下:

从所有边界框列表中选取置信分数最高的边界框。

计算此边界框与其他所有边界框的IoU。

如果任何其他边界框的IoU超过了self.nmsThreshold,则将其删除。

重复步骤1-3,直到所有边界框都被检查。

6. 返回值

函数返回一个indices列表,包含了经过NMS算法后保留下来的边界框的索引。

通过使用NMS,你可以减少多余的检测,并保留最有可能代表实际对象的边界框。

相关推荐
孔明兴汉1 小时前
大模型 ai coding 比较
人工智能
overmind1 小时前
oeasy Python 115 列表弹栈用pop删除指定索引
开发语言·python
IT研究所1 小时前
IT 资产管理 (ITAM) 与 ITSM 协同实践:构建从资产到服务的闭环管理体系
大数据·运维·人工智能·科技·安全·低代码·自动化
沐曦股份MetaX2 小时前
基于内生复杂性的类脑脉冲大模型“瞬悉1.0”问世
人工智能·开源
hnxaoli2 小时前
win10程序(十六)通达信参数清洗器
开发语言·python·小程序·股票·炒股
power 雀儿2 小时前
张量基本运算
人工智能
电饭叔2 小时前
文本为 “ok”、前景色为白色、背景色为红色,且点击后触发 processOK 回调函数的 tkinter 按钮
开发语言·python
陈天伟教授3 小时前
人工智能应用- 人工智能交叉:01. 破解蛋白质结构之谜
人工智能·神经网络·算法·机器学习·推荐算法
政安晨3 小时前
政安晨【人工智能项目随笔】使用OpenClaw的主节点协同子节点撰写大型技术前沿论文的实战指南
人工智能·ai agent·openclaw论文写作·openclaw论文写作经验·ai代理写论文·ai分布式协作·oepnclaw应用
雷电法拉珑3 小时前
财务数据批量采集
linux·前端·python