cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

python 复制代码
indices = cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

这行代码是调用 OpenCV 的 cv.dnn.NMSBoxes 函数来执行非最大抑制(Non-Maximum Suppression, NMS)算法,这是一个常用的后处理步骤,用于消除多余的重叠检测框。下面我将解释该函数的每个参数和其工作方式:

1. bbox

bbox 是一个列表,包含了所有检测到的边界框。每个边界框都是一个列表,包含四个元素:

x,y,w,h,分别表示边界框的左上角坐标(x, y)和边界框的宽度(w)和高度(h)。

2. confs

confs 是一个列表,包含了每个边界框的置信分数。这个分数表示模型对该边界框中包含对象的置信程度。

3. self.confThreshold

self.confThreshold 是一个阈值,用于过滤掉置信分数低于该阈值的所有边界框。只有置信分数高于此阈值的边界框才会被考虑进NMS算法。

4. self.nmsThreshold

self.nmsThreshold 是另一个阈值,用于NMS算法。如果两个边界框的交并比(Intersection over Union, IoU)大于此阈值,则保留置信分数更高的边界框,并消除另一个。

5. NMS 算法

NMS算法工作流程如下:

从所有边界框列表中选取置信分数最高的边界框。

计算此边界框与其他所有边界框的IoU。

如果任何其他边界框的IoU超过了self.nmsThreshold,则将其删除。

重复步骤1-3,直到所有边界框都被检查。

6. 返回值

函数返回一个indices列表,包含了经过NMS算法后保留下来的边界框的索引。

通过使用NMS,你可以减少多余的检测,并保留最有可能代表实际对象的边界框。

相关推荐
钮钴禄·爱因斯晨12 小时前
Python常见的文件操作
android·数据库·python
涛涛讲AI12 小时前
Gemini3对比豆包,不做游戏,不做图片拿我工作的实例对比
人工智能·扣子·豆包·gemini3
Web3_Daisy12 小时前
烧池子、貔貅、跑路概率…如何在链上避免踩雷?
人工智能·安全·web3·区块链·比特币
不知道累,只知道类12 小时前
把AI当助手:写好提示词的实战指南
人工智能
Zzz 小生13 小时前
Github-Go语言AI智能体开发套件:构建下一代智能代理的利器
人工智能·golang·github
AI小云13 小时前
【数据操作与可视化】Pandas数据处理-Series数据结构
开发语言·数据结构·python·numpy·pandas
CloudWeGo13 小时前
企业级落地案例:抖音搜索核心链路基于 Kitex 流式改造的技术实践
人工智能·架构·开源
Python大数据分析@13 小时前
如何理解Python中的yield用法?
python
U***498313 小时前
机器学习趋势
人工智能·机器学习
lusasky13 小时前
大模型混合多语言理解的原理
人工智能·神经网络·机器学习·nlp