cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

python 复制代码
indices = cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

这行代码是调用 OpenCV 的 cv.dnn.NMSBoxes 函数来执行非最大抑制(Non-Maximum Suppression, NMS)算法,这是一个常用的后处理步骤,用于消除多余的重叠检测框。下面我将解释该函数的每个参数和其工作方式:

1. bbox

bbox 是一个列表,包含了所有检测到的边界框。每个边界框都是一个列表,包含四个元素:

x,y,w,h,分别表示边界框的左上角坐标(x, y)和边界框的宽度(w)和高度(h)。

2. confs

confs 是一个列表,包含了每个边界框的置信分数。这个分数表示模型对该边界框中包含对象的置信程度。

3. self.confThreshold

self.confThreshold 是一个阈值,用于过滤掉置信分数低于该阈值的所有边界框。只有置信分数高于此阈值的边界框才会被考虑进NMS算法。

4. self.nmsThreshold

self.nmsThreshold 是另一个阈值,用于NMS算法。如果两个边界框的交并比(Intersection over Union, IoU)大于此阈值,则保留置信分数更高的边界框,并消除另一个。

5. NMS 算法

NMS算法工作流程如下:

从所有边界框列表中选取置信分数最高的边界框。

计算此边界框与其他所有边界框的IoU。

如果任何其他边界框的IoU超过了self.nmsThreshold,则将其删除。

重复步骤1-3,直到所有边界框都被检查。

6. 返回值

函数返回一个indices列表,包含了经过NMS算法后保留下来的边界框的索引。

通过使用NMS,你可以减少多余的检测,并保留最有可能代表实际对象的边界框。

相关推荐
winfield8211 分钟前
设计一个企业知识库 MCP Server
人工智能
零小陈上(shouhou6668889)5 分钟前
YOLOv8+PyQt5玉米病害检测系统(yolov8模型,从图像、视频和摄像头三种路径识别检测)
python·qt·yolo
Echo_NGC22376 分钟前
【DDPM 扩散模型】Part 7:最后总结!Denoising Diffusion Probabilistic Models论文全维度详解
人工智能·深度学习·神经网络·扩散模型·ddpm·高斯噪声
winfield8218 分钟前
推荐/搜索系统的召回、精排、粗排、打散这四个环节都是做什么的?
大数据·人工智能
540_54011 分钟前
ADVANCE Day23
人工智能·python·机器学习
有为少年19 分钟前
数据增强在小型卷积神经网络中的有效性探究
人工智能·深度学习·神经网络·机器学习·cnn
一代明君Kevin学长22 分钟前
快速自定义一个带进度监控的文件资源类
java·前端·后端·python·文件上传·文件服务·文件流
雪花desu22 分钟前
什么是融入 CoT 写 prompt
人工智能·语言模型
AIBox36533 分钟前
ChatGPT 中文版镜像官网,GPT5.2使用教程(2025年 12 月更新)
人工智能
HappRobot34 分钟前
python类和对象
开发语言·python