cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

python 复制代码
indices = cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

这行代码是调用 OpenCV 的 cv.dnn.NMSBoxes 函数来执行非最大抑制(Non-Maximum Suppression, NMS)算法,这是一个常用的后处理步骤,用于消除多余的重叠检测框。下面我将解释该函数的每个参数和其工作方式:

1. bbox

bbox 是一个列表,包含了所有检测到的边界框。每个边界框都是一个列表,包含四个元素:

x,y,w,h,分别表示边界框的左上角坐标(x, y)和边界框的宽度(w)和高度(h)。

2. confs

confs 是一个列表,包含了每个边界框的置信分数。这个分数表示模型对该边界框中包含对象的置信程度。

3. self.confThreshold

self.confThreshold 是一个阈值,用于过滤掉置信分数低于该阈值的所有边界框。只有置信分数高于此阈值的边界框才会被考虑进NMS算法。

4. self.nmsThreshold

self.nmsThreshold 是另一个阈值,用于NMS算法。如果两个边界框的交并比(Intersection over Union, IoU)大于此阈值,则保留置信分数更高的边界框,并消除另一个。

5. NMS 算法

NMS算法工作流程如下:

从所有边界框列表中选取置信分数最高的边界框。

计算此边界框与其他所有边界框的IoU。

如果任何其他边界框的IoU超过了self.nmsThreshold,则将其删除。

重复步骤1-3,直到所有边界框都被检查。

6. 返回值

函数返回一个indices列表,包含了经过NMS算法后保留下来的边界框的索引。

通过使用NMS,你可以减少多余的检测,并保留最有可能代表实际对象的边界框。

相关推荐
amhjdx23 分钟前
星巽短剧以科技赋能影视创新,构建全球短剧新生态!
人工智能·科技
听风南巷1 小时前
机器人全身控制WBC理论及零空间原理解析(数学原理解析版)
人工智能·数学建模·机器人
美林数据Tempodata1 小时前
“双新”指引,AI驱动:工业数智应用生产性实践创新
大数据·人工智能·物联网·实践中心建设·金基地建设
电科_银尘1 小时前
【大语言模型】-- 私有化部署
人工智能·语言模型·自然语言处理
惊讶的猫2 小时前
LSTM论文解读
开发语言·python
测试老哥3 小时前
软件测试之单元测试知识总结
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
翔云 OCR API3 小时前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
buvsvdp50059ac3 小时前
如何在VSCode中设置Python解释器?
ide·vscode·python
南方者4 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
njxiejing4 小时前
Python进度条工具tqdm的安装与使用
开发语言·python