cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

python 复制代码
indices = cv.dnn.NMSBoxes(bbox, confs, self.confThreshold, self.nmsThreshold)

这行代码是调用 OpenCV 的 cv.dnn.NMSBoxes 函数来执行非最大抑制(Non-Maximum Suppression, NMS)算法,这是一个常用的后处理步骤,用于消除多余的重叠检测框。下面我将解释该函数的每个参数和其工作方式:

1. bbox

bbox 是一个列表,包含了所有检测到的边界框。每个边界框都是一个列表,包含四个元素:

x,y,w,h,分别表示边界框的左上角坐标(x, y)和边界框的宽度(w)和高度(h)。

2. confs

confs 是一个列表,包含了每个边界框的置信分数。这个分数表示模型对该边界框中包含对象的置信程度。

3. self.confThreshold

self.confThreshold 是一个阈值,用于过滤掉置信分数低于该阈值的所有边界框。只有置信分数高于此阈值的边界框才会被考虑进NMS算法。

4. self.nmsThreshold

self.nmsThreshold 是另一个阈值,用于NMS算法。如果两个边界框的交并比(Intersection over Union, IoU)大于此阈值,则保留置信分数更高的边界框,并消除另一个。

5. NMS 算法

NMS算法工作流程如下:

从所有边界框列表中选取置信分数最高的边界框。

计算此边界框与其他所有边界框的IoU。

如果任何其他边界框的IoU超过了self.nmsThreshold,则将其删除。

重复步骤1-3,直到所有边界框都被检查。

6. 返回值

函数返回一个indices列表,包含了经过NMS算法后保留下来的边界框的索引。

通过使用NMS,你可以减少多余的检测,并保留最有可能代表实际对象的边界框。

相关推荐
Deepoch2 小时前
智能清洁新纪元:Deepoc开发板如何重塑扫地机器人的“大脑“
人工智能·机器人·清洁机器人·具身模型·deepoc
装不满的克莱因瓶2 小时前
【Coze智能体实战二】一键生成儿歌背单词视频
人工智能·ai·实战·agent·工作流·智能体·coze
杰米不放弃2 小时前
AI大模型应用开发学习-26【20251227】
人工智能·学习
一个会的不多的人2 小时前
人工智能基础篇:概念性名词浅谈(第八讲)
人工智能·制造·数字化转型
weixin_446260853 小时前
Robin: AI驱动的暗网OSINT工具
人工智能
Coder_Boy_3 小时前
基于SpringAI的智能运维平台(AI驱动)
大数据·运维·人工智能
圆号本昊3 小时前
RimWorld AI记忆系统深度技术分析
人工智能
Francek Chen4 小时前
【飞算JavaAI】智能开发助手赋能Java领域,飞算JavaAI全方位解析
java·开发语言·人工智能·ai编程·飞算
Hello娃的4 小时前
【神经网络】人工神经网络ANN
人工智能·深度学习·神经网络
RockHopper20254 小时前
一种认知孪生xLLM架构的原理说明
人工智能·llm·数字孪生·认知孪生