错误码:spark_error_00000004

错误码:spark_error_00000004

错误码:spark_error_00000004

问题原因:这个报错与Spark执行器(executor)的内存不足有关,程序运行时所需内存 > memory。一般是因为处理数据量或者缓存的数据量较大,导致内存不足,并且内存分配速度 > GC回收速度导致。

问题原因:这个报错与Spark执行器(executor)的内存不足有关,程序运行时所需内存 > memory。一般是因为处理数据量或者缓存的数据量较大,导致内存不足,并且内存分配速度 > GC回收速度导致。

解决方法:

解决方法:

1、优化算法和数据处理:

1、优化算法和数据处理:

1)对于大数据量的处理,可以考虑优化算法和数据处理逻辑,比如分批处理数据,减少内存占用。

1)对于大数据量的处理,可以考虑优化算法和数据处理逻辑,比如分批处理数据,减少内存占用。

2)可以尝试减少不必要的cache缓存操作,避免对比较大的数据进行广播(broadcast)操作,并对程序逻辑和底层数据进行优化,减少内存消耗。

2)可以尝试减少不必要的cache缓存操作,避免对比较大的数据进行广播(broadcast)操作,并对程序逻辑和底层数据进行优化,减少内存消耗。

2、调整内存配置和资源管理:

2、调整内存配置和资源管理:

1)可以考虑增加executor的内存大小,通过--executor-memory参数来设置。例如,--executor-memory 4g表示将executor的内存设置为4GB。

1)可以考虑增加executor的内存大小,通过--executor-memory参数来设置。例如,--executor-memory 4g表示将executor的内存设置为4GB。

2)减少单个executor的并发数(cores),以减少每个executor的负载和内存需求,例如,--executor-cores 2表示将executor的CPU设置为2核。

2)减少单个executor的并发数(cores),以减少每个executor的负载和内存需求,例如,--executor-cores 2表示将executor的CPU设置为2核。

相关推荐
智能相对论2 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
焦耳热科技前沿4 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
min1811234564 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
武子康5 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
小北方城市网5 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
数据智研5 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
范桂飓6 小时前
大模型分布式训练框架 Megatron-LM
人工智能·分布式
TDengine (老段)7 小时前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
亚古数据7 小时前
亚古数据:查询斯里兰卡公司可以获取什么文件和信息?
大数据·亚古数据·斯里兰卡公司查询
WLJT1231231237 小时前
守护自然与滋养民生的绿色之路
大数据·安全