错误码:spark_error_00000004

错误码:spark_error_00000004

错误码:spark_error_00000004

问题原因:这个报错与Spark执行器(executor)的内存不足有关,程序运行时所需内存 > memory。一般是因为处理数据量或者缓存的数据量较大,导致内存不足,并且内存分配速度 > GC回收速度导致。

问题原因:这个报错与Spark执行器(executor)的内存不足有关,程序运行时所需内存 > memory。一般是因为处理数据量或者缓存的数据量较大,导致内存不足,并且内存分配速度 > GC回收速度导致。

解决方法:

解决方法:

1、优化算法和数据处理:

1、优化算法和数据处理:

1)对于大数据量的处理,可以考虑优化算法和数据处理逻辑,比如分批处理数据,减少内存占用。

1)对于大数据量的处理,可以考虑优化算法和数据处理逻辑,比如分批处理数据,减少内存占用。

2)可以尝试减少不必要的cache缓存操作,避免对比较大的数据进行广播(broadcast)操作,并对程序逻辑和底层数据进行优化,减少内存消耗。

2)可以尝试减少不必要的cache缓存操作,避免对比较大的数据进行广播(broadcast)操作,并对程序逻辑和底层数据进行优化,减少内存消耗。

2、调整内存配置和资源管理:

2、调整内存配置和资源管理:

1)可以考虑增加executor的内存大小,通过--executor-memory参数来设置。例如,--executor-memory 4g表示将executor的内存设置为4GB。

1)可以考虑增加executor的内存大小,通过--executor-memory参数来设置。例如,--executor-memory 4g表示将executor的内存设置为4GB。

2)减少单个executor的并发数(cores),以减少每个executor的负载和内存需求,例如,--executor-cores 2表示将executor的CPU设置为2核。

2)减少单个executor的并发数(cores),以减少每个executor的负载和内存需求,例如,--executor-cores 2表示将executor的CPU设置为2核。

相关推荐
汤姆yu29 分钟前
基于python大数据的小说数据可视化及预测系统
大数据·python·信息可视化
立控信息LKONE1 小时前
库室采购安全设施设备——自主研发、国产化监管一体机
大数据·安全
20岁30年经验的码农1 小时前
Kafka 消息中间件实战指南
分布式·kafka·linq
无心水1 小时前
【分布式利器:限流】4、异步场景限流:消息队列削峰填谷+动态限流实现
分布式·mq·分布式限流·动态限流·分布式利器·异步场景限流·消息队列削峰填谷
z***89713 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式
TDengine (老段)3 小时前
TDengine 转换函数 TO_JSON 用户手册
android·大数据·数据库·json·时序数据库·tdengine·涛思数据
隐语SecretFlow4 小时前
【隐语Serectflow】基于隐私保护的分布式数字身份认证技术研究及实践探索
分布式
回家路上绕了弯4 小时前
支付请求幂等性设计:从原理到落地,杜绝重复扣款
分布式·后端
rgb2gray4 小时前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
expect7g5 小时前
Paimon源码解读 -- PartialUpdateMerge
大数据·后端·flink