Challenges and Applications of Large Language Models

本文是LLM系列文章,针对《Challenges and Applications of Large Language Models》的翻译。

大语言模型的挑战与应用

  • 摘要
  • [1 引言](#1 引言)
  • [2 挑战](#2 挑战)
  • [3 应用](#3 应用)
    • [3.1 聊天机器人](#3.1 聊天机器人)
    • [3.2 计算生物学](#3.2 计算生物学)
    • [3.3 计算机程序](#3.3 计算机程序)
    • [3.4 创造性工作](#3.4 创造性工作)
    • [3.5 知识工作](#3.5 知识工作)
    • [3.6 法律](#3.6 法律)
    • [3.7 医学](#3.7 医学)
    • [3.8 推理](#3.8 推理)
    • [3.9 机器人和嵌入式代理](#3.9 机器人和嵌入式代理)
    • [3.10 社会科学和心理学](#3.10 社会科学和心理学)
    • [3.11 合成数据生成](#3.11 合成数据生成)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

几年内,大型语言模型(LLM)在机器学习话语中从不存在变成了无处不在。由于该领域的快速发展,很难确定剩余的挑战和已经富有成果的应用领域。在本文中,我们的目标是建立一套系统的开放性问题和应用成功,以便ML研究人员能够更快地了解该领域的现状,并变得富有成效。

1 引言

2 挑战

3 应用

3.1 聊天机器人

3.2 计算生物学

3.3 计算机程序

3.4 创造性工作

3.5 知识工作

3.6 法律

3.7 医学

3.8 推理

3.9 机器人和嵌入式代理

3.10 社会科学和心理学

3.11 合成数据生成

4 相关工作

5 结论

在这项工作中,我们确定了大型语言模型的几个尚未解决的挑战,概述了它们的当前应用,并讨论了前者如何约束后者。通过强调现有方法的局限性,我们希望促进未来针对这些问题的研究。我们还希望,通过概述不同应用领域中使用的方法,我们可以促进领域之间的思想交流,并以进一步研究为目标。

相关推荐
8K超高清14 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
老夫的码又出BUG了15 小时前
预测式AI与生成式AI
人工智能·科技·ai
AKAMAI15 小时前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算
flex888815 小时前
输入一个故事主题,使用大语言模型生成故事视频【视频中包含大模型生成的图片、故事内容,以及音频和字幕信息】
人工智能·语言模型·自然语言处理
TTGGGFF15 小时前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
张艾拉 Fun AI Everyday15 小时前
从 ChatGPT 到 OpenEvidence:AI 医疗的正确打开方式
人工智能·chatgpt
mwq3012316 小时前
位置编码的技术演进线路:从绝对到相对,再到几何一致性
人工智能
mwq3012316 小时前
外推性-位置编码的阿喀琉斯之踵
人工智能
DP+GISer16 小时前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya16 小时前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain