Challenges and Applications of Large Language Models

本文是LLM系列文章,针对《Challenges and Applications of Large Language Models》的翻译。

大语言模型的挑战与应用

  • 摘要
  • [1 引言](#1 引言)
  • [2 挑战](#2 挑战)
  • [3 应用](#3 应用)
    • [3.1 聊天机器人](#3.1 聊天机器人)
    • [3.2 计算生物学](#3.2 计算生物学)
    • [3.3 计算机程序](#3.3 计算机程序)
    • [3.4 创造性工作](#3.4 创造性工作)
    • [3.5 知识工作](#3.5 知识工作)
    • [3.6 法律](#3.6 法律)
    • [3.7 医学](#3.7 医学)
    • [3.8 推理](#3.8 推理)
    • [3.9 机器人和嵌入式代理](#3.9 机器人和嵌入式代理)
    • [3.10 社会科学和心理学](#3.10 社会科学和心理学)
    • [3.11 合成数据生成](#3.11 合成数据生成)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

几年内,大型语言模型(LLM)在机器学习话语中从不存在变成了无处不在。由于该领域的快速发展,很难确定剩余的挑战和已经富有成果的应用领域。在本文中,我们的目标是建立一套系统的开放性问题和应用成功,以便ML研究人员能够更快地了解该领域的现状,并变得富有成效。

1 引言

2 挑战

3 应用

3.1 聊天机器人

3.2 计算生物学

3.3 计算机程序

3.4 创造性工作

3.5 知识工作

3.6 法律

3.7 医学

3.8 推理

3.9 机器人和嵌入式代理

3.10 社会科学和心理学

3.11 合成数据生成

4 相关工作

5 结论

在这项工作中,我们确定了大型语言模型的几个尚未解决的挑战,概述了它们的当前应用,并讨论了前者如何约束后者。通过强调现有方法的局限性,我们希望促进未来针对这些问题的研究。我们还希望,通过概述不同应用领域中使用的方法,我们可以促进领域之间的思想交流,并以进一步研究为目标。

相关推荐
小雷FansUnion2 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周2 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享3 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜3 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿3 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_3 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1233 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷3 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手3 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野3 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能