Challenges and Applications of Large Language Models

本文是LLM系列文章,针对《Challenges and Applications of Large Language Models》的翻译。

大语言模型的挑战与应用

  • 摘要
  • [1 引言](#1 引言)
  • [2 挑战](#2 挑战)
  • [3 应用](#3 应用)
    • [3.1 聊天机器人](#3.1 聊天机器人)
    • [3.2 计算生物学](#3.2 计算生物学)
    • [3.3 计算机程序](#3.3 计算机程序)
    • [3.4 创造性工作](#3.4 创造性工作)
    • [3.5 知识工作](#3.5 知识工作)
    • [3.6 法律](#3.6 法律)
    • [3.7 医学](#3.7 医学)
    • [3.8 推理](#3.8 推理)
    • [3.9 机器人和嵌入式代理](#3.9 机器人和嵌入式代理)
    • [3.10 社会科学和心理学](#3.10 社会科学和心理学)
    • [3.11 合成数据生成](#3.11 合成数据生成)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

几年内,大型语言模型(LLM)在机器学习话语中从不存在变成了无处不在。由于该领域的快速发展,很难确定剩余的挑战和已经富有成果的应用领域。在本文中,我们的目标是建立一套系统的开放性问题和应用成功,以便ML研究人员能够更快地了解该领域的现状,并变得富有成效。

1 引言

2 挑战

3 应用

3.1 聊天机器人

3.2 计算生物学

3.3 计算机程序

3.4 创造性工作

3.5 知识工作

3.6 法律

3.7 医学

3.8 推理

3.9 机器人和嵌入式代理

3.10 社会科学和心理学

3.11 合成数据生成

4 相关工作

5 结论

在这项工作中,我们确定了大型语言模型的几个尚未解决的挑战,概述了它们的当前应用,并讨论了前者如何约束后者。通过强调现有方法的局限性,我们希望促进未来针对这些问题的研究。我们还希望,通过概述不同应用领域中使用的方法,我们可以促进领域之间的思想交流,并以进一步研究为目标。

相关推荐
deephub29 分钟前
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
人工智能·深度学习·transformer·大语言模型·注意力机制
搏博41 分钟前
神经网络问题之二:梯度爆炸(Gradient Explosion)
人工智能·深度学习·神经网络
KGback1 小时前
【论文解析】HAQ: Hardware-Aware Automated Quantization With Mixed Precision
人工智能
电子手信1 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
不高明的骗子1 小时前
【深度学习之一】2024最新pytorch+cuda+cudnn下载安装搭建开发环境
人工智能·pytorch·深度学习·cuda
Chef_Chen1 小时前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博1 小时前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络
GL_Rain1 小时前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
shansjqun1 小时前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
狸克先生2 小时前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互