Challenges and Applications of Large Language Models

本文是LLM系列文章,针对《Challenges and Applications of Large Language Models》的翻译。

大语言模型的挑战与应用

  • 摘要
  • [1 引言](#1 引言)
  • [2 挑战](#2 挑战)
  • [3 应用](#3 应用)
    • [3.1 聊天机器人](#3.1 聊天机器人)
    • [3.2 计算生物学](#3.2 计算生物学)
    • [3.3 计算机程序](#3.3 计算机程序)
    • [3.4 创造性工作](#3.4 创造性工作)
    • [3.5 知识工作](#3.5 知识工作)
    • [3.6 法律](#3.6 法律)
    • [3.7 医学](#3.7 医学)
    • [3.8 推理](#3.8 推理)
    • [3.9 机器人和嵌入式代理](#3.9 机器人和嵌入式代理)
    • [3.10 社会科学和心理学](#3.10 社会科学和心理学)
    • [3.11 合成数据生成](#3.11 合成数据生成)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

几年内,大型语言模型(LLM)在机器学习话语中从不存在变成了无处不在。由于该领域的快速发展,很难确定剩余的挑战和已经富有成果的应用领域。在本文中,我们的目标是建立一套系统的开放性问题和应用成功,以便ML研究人员能够更快地了解该领域的现状,并变得富有成效。

1 引言

2 挑战

3 应用

3.1 聊天机器人

3.2 计算生物学

3.3 计算机程序

3.4 创造性工作

3.5 知识工作

3.6 法律

3.7 医学

3.8 推理

3.9 机器人和嵌入式代理

3.10 社会科学和心理学

3.11 合成数据生成

4 相关工作

5 结论

在这项工作中,我们确定了大型语言模型的几个尚未解决的挑战,概述了它们的当前应用,并讨论了前者如何约束后者。通过强调现有方法的局限性,我们希望促进未来针对这些问题的研究。我们还希望,通过概述不同应用领域中使用的方法,我们可以促进领域之间的思想交流,并以进一步研究为目标。

相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1