数学建模__动态规划

动态规划就是,将任务每一步均记录下来,以便将来重复使用时能够直接调用


问题描述:给定n个物品,每个物品的重量是Wi,价值是Vi,但是背包最多能装下capacity重量的物品,问我们如何选择才能利益最大化。


这里涉及到建模过程,本文章主要讲解代码实现,建模过程较为简略。


使用dp[i][j]来表示在容量为j的情况下,前i件物品的最大化利益。

情况一:放入第i件物品前,发现j<weight[i],因此dp[i][j]此时仍然是dp[i-1][j](也就是dp[i][j]没有发生变化)。

情况二:放入第i件物品时,发现j >= weight[i],此时你放入这件物品与否要看放进去以后利益是如何变化的。

①不放入,那么dp[i][j]的值还是dp[i-1][j]。

②放入,那么dp[i][j]的值是dp[i-1][j-weight[i]]+value[i]。(想一想对不对)

那么具体实现代码如下

py 复制代码
weight = [1,2,5,6,7,9]
value = [1,6,18,22,28,36]

num = 6
capicity = 13


def fun(num, capicity, weight, value):
    #构造一个num+1行,capicity+1列的二维数组
    #便于下标从1开始使用
    dp = np.array([[0]*(capicity+1)]*(num+1))
 

    #dp[i][j]表示第前i件物品在容量为j下的最大价值
    #最终需要知道dp[num][capicity]也就是dp[6][13],在容量为13情况下前6件物品的最大价值是多少。
    #进一步的需要知道dp[][]
    for i in range(1,num+1):
        for j in range(1, capicity+1):
            if j >= weight[i-1]:
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i-1]]+price[i-1])
            else:
                dp[i][j] = dp[i-1][j]

    print(dp)

fun(num, capicity, weight, value)

核心就在于这个动态转移方程。

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] } dp[i][j] = max\{dp[i-1][j],dp[i-1][j-weight[i]]+value[i]\} dp[i][j]=max{dp[i−1][j],dp[i−1][j−weight[i]]+value[i]}

虽写下这篇笔记,但有关动态规划的问题还需多多研究,加深理解。

相关推荐
Rubisco..2 小时前
牛客周赛 Round 111
数据结构·c++·算法
兮山与2 小时前
算法8.0
算法
高山上有一只小老虎2 小时前
杨辉三角的变形
java·算法
Swift社区2 小时前
LeetCode 395 - 至少有 K 个重复字符的最长子串
算法·leetcode·职场和发展
hz_zhangrl2 小时前
CCF-GESP 等级考试 2025年9月认证C++四级真题解析
开发语言·c++·算法·程序设计·gesp·c++四级·gesp2025年9月
少许极端2 小时前
算法奇妙屋(六)-哈希表
java·数据结构·算法·哈希算法·散列表·排序
羊羊小栈2 小时前
基于「多模态大模型 + BGE向量检索增强RAG」的新能源汽车故障诊断智能问答系统(vue+flask+AI算法)
vue.js·人工智能·算法·flask·汽车·毕业设计·大作业
Da Da 泓2 小时前
shellSort
java·数据结构·学习·算法·排序算法
2013编程爱好者3 小时前
计算时间复杂度
c++·算法·排序算法
巴里巴气3 小时前
第15题 三数之和
数据结构·算法·leetcode