数学建模__动态规划

动态规划就是,将任务每一步均记录下来,以便将来重复使用时能够直接调用


问题描述:给定n个物品,每个物品的重量是Wi,价值是Vi,但是背包最多能装下capacity重量的物品,问我们如何选择才能利益最大化。


这里涉及到建模过程,本文章主要讲解代码实现,建模过程较为简略。


使用dp[i][j]来表示在容量为j的情况下,前i件物品的最大化利益。

情况一:放入第i件物品前,发现j<weight[i],因此dp[i][j]此时仍然是dp[i-1][j](也就是dp[i][j]没有发生变化)。

情况二:放入第i件物品时,发现j >= weight[i],此时你放入这件物品与否要看放进去以后利益是如何变化的。

①不放入,那么dp[i][j]的值还是dp[i-1][j]。

②放入,那么dp[i][j]的值是dp[i-1][j-weight[i]]+value[i]。(想一想对不对)

那么具体实现代码如下

py 复制代码
weight = [1,2,5,6,7,9]
value = [1,6,18,22,28,36]

num = 6
capicity = 13


def fun(num, capicity, weight, value):
    #构造一个num+1行,capicity+1列的二维数组
    #便于下标从1开始使用
    dp = np.array([[0]*(capicity+1)]*(num+1))
 

    #dp[i][j]表示第前i件物品在容量为j下的最大价值
    #最终需要知道dp[num][capicity]也就是dp[6][13],在容量为13情况下前6件物品的最大价值是多少。
    #进一步的需要知道dp[][]
    for i in range(1,num+1):
        for j in range(1, capicity+1):
            if j >= weight[i-1]:
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i-1]]+price[i-1])
            else:
                dp[i][j] = dp[i-1][j]

    print(dp)

fun(num, capicity, weight, value)

核心就在于这个动态转移方程。

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] } dp[i][j] = max\{dp[i-1][j],dp[i-1][j-weight[i]]+value[i]\} dp[i][j]=max{dp[i−1][j],dp[i−1][j−weight[i]]+value[i]}

虽写下这篇笔记,但有关动态规划的问题还需多多研究,加深理解。

相关推荐
苏言の狗8 分钟前
小R的并集大小期望计算 | 蛮力
数据结构·算法
BineHello15 分钟前
MPC用优化求解器 - 解决无人机轨迹跟踪
算法·矩阵·自动驾驶·动态规划·无人机
誓约酱17 分钟前
(每日一题) 力扣 14 最长公共前缀
算法·leetcode·职场和发展
冠位观测者1 小时前
【Leetcode 每日一题 - 补卡】2070. 每一个查询的最大美丽值
数据结构·算法·leetcode
誓约酱1 小时前
(每日一题) 力扣 860 柠檬水找零
linux·c语言·c++·算法·leetcode·职场和发展
地平线开发者1 小时前
手把手基于 MINI 数据集带你做一次板端精度评估
算法·自动驾驶
詹天佐1 小时前
ICCE 数字车钥匙介绍
人工智能·算法
ak啊1 小时前
记忆化(Memoization)
算法
moonless02222 小时前
【Python】你还不了解数据结构与算法?
数据结构·算法·编程语言
z_y_j2299704382 小时前
L1-039 古风排版
c语言·数据结构·算法