OpenCV(二十九):图像腐蚀

1.图像腐蚀原理

腐蚀操作的原理是将一个结构元素(也称为核或模板)在图像上滑动,并将其与图像中对应位置的像素进行比较。如果结构元素的所有像素与图像中对应位置的像素都匹配,那么该位置的像素值保持不变。如果结构元素的任何一个像素与图像中对应位置的像素不匹配,那么该位置的像素值被置为0(或其他指定的像素值),从而改变了图像的形状和结构。

2.图像腐蚀目的:

  • 去除图像中微小物体
  • 分离较近的两个物体

3.结构元素生成函数getStructuringElement()

Mat cv::getStructuringElement ( int shape,

Size ksize,

Point anchor = point(-1,-1)

  • shape:结构元素的种类。
  • ksize:结构元素的尺寸大小。
  • anchor:中心点的位置,默认参数为结构元素的几何中心点。

其中结构元素的类型参数:

4.图像腐蚀操作函数erode()

void cv::erode ( InputArray src,

OutputArray dst,

InputArray kernel,

Point anchor = Point(-1,-1),

int iterations = 1,

int cborderType = BORDER CONSTANT,

const Scalar & borderValue = morphologyDefaultBorderValue()

)

  • src:输入的待腐蚀图像,图像的通道数可以是任意的,但是图像的数据类型必须是CV_8U,CV _16U,CV_16S,CV_32F或CV_64F之一。
  • dst:腐蚀后的输出图像,与输入图像src具有相同的尺寸和数据类型。
  • kermel:用于腐蚀操作的结构元素,可以自己输入,也可以用getStructuringElement0)函数生成。
  • anchor:中心点在结构元素中的位置,默认参数为结构元素的几何中心点。
  • iterations:腐蚀的次数。
  • borderType:像素外推法选择标志。
  • borderValue:边界不变的边界值。

5.示例代码:

复制代码
//绘制包含区域函数
void drawState(Mat image, int number, Mat centroids, Mat stats, String string) {
    RNG rng(10086);
    vector<Vec4b> colors;
    for(int i=0;i<number;i++){
        //使用均匀分布的随机数确定颜色
        Vec4b vec4=Vec4b(rng.uniform(0,256),rng.uniform(0,256),rng.uniform(0,256),rng.uniform(0,256));
        colors.push_back(vec4);
    }
    //以不同颜色标记出不同的连通域
    for(int i=1;i<number;i++){
        //中心位置
        int center_x=centroids.at<double>(i,0);
        int center_y=centroids.at<double>(i,1);
        //矩形边框
        int x=stats.at<int>(i,CC_STAT_LEFT);
        int y=stats.at<int>(i,CC_STAT_TOP);
        int w=stats.at<int>(i,CC_STAT_WIDTH);
        int h=stats.at<int>(i,CC_STAT_HEIGHT);
        int area=stats.at<int>(i,CC_STAT_AREA);
        //中心位置绘制
        circle(image,Point(center_x,center_y),2,Scalar(0,255,0),2,8,0);
        //外接矩形
        Rect rect(x,y,w,h);
        rectangle(image,rect,colors[i],1,8,0);
        putText(image, format("%d",i),Point(center_x,center_y),FONT_HERSHEY_SIMPLEX,0.5,Scalar(255,0,255),1);
    }
    imwrite("/sdcard/DCIM/"+string+".png",image);
}

void Image_corrosion(Mat image){
    Mat img2;
    copyTo(image,img2,image);//克隆一个单独的图像,用于后期图像绘制
    Mat rice,riceBW;
    //将图像转成二值图像,用于统计连通域
    cvtColor(image,rice,COLOR_BGR2GRAY);
    threshold(rice,riceBW,50,255,THRESH_BINARY);

    Mat out,stats,centroids;
    //统计图像中连通域的个数
    int number= connectedComponentsWithStats(riceBW,out,stats,centroids,8,CV_16U);
    drawState(image,number,centroids,stats,"Uncorroded_connected");//绘制图像
    Mat strucr1= getStructuringElement(0,Size(3,3));//矩形结构元素
    //Mat strucr1= getStructuringElement(1,Size(3,3));//十字结构元素

    erode(riceBW,riceBW,strucr1);//对图像进行腐蚀
    number= connectedComponentsWithStats(riceBW,out,stats,centroids,8,CV_16U);
    drawState(img2,number,centroids,stats,"corroded_connected");
}
相关推荐
九年义务漏网鲨鱼1 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间1 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享1 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
xiaolang_8616_wjl1 小时前
c++文字游戏_闯关打怪2.0(开源)
开发语言·c++·开源
夜月yeyue1 小时前
设计模式分析
linux·c++·stm32·单片机·嵌入式硬件
产品经理独孤虾1 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien2 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
无小道2 小时前
c++-引用(包括完美转发,移动构造,万能引用)
c语言·开发语言·汇编·c++