【Opencv入门到项目实践】(五):边缘检测

边缘检测

在上一篇文章中,我们介绍了图像的梯度结算来检测图像边缘,但是我们之前只是检验了大小,不知道具体方向。

使用Canny边缘检测是一种经典而有效的边缘检测算法,Canny边缘检测算法包括以下五大步骤:

1.使用高斯滤波器,以平滑图像,滤除噪声

首先,对待处理的图像进行高斯滤波以降低噪声的影响。高斯滤波器可以平滑图像并减少局部变化的影响。这里和我们之前在平滑处理中介绍的一样,这里使用的高斯滤波器是归一化后的,具体如下:

然后根据这个滤波器,我们就可以计算每一个像素经过高斯平滑后的值

2.计算图像中每个像素点的梯度强度和方向

在经过高斯滤波后的图像上,使用Sobel算子或其他梯度算子计算图像的梯度大小和方向,表示图像中每个像素的灰度变化率和方向。

  • 在水平方向上计算梯度
  • 在垂直方向上计算梯度

两个方向的Sobel算子如下:

两个方向梯度计算结果如下:

  • 计算梯度幅值和方向:根据水平和垂直梯度计算每个像素的梯度幅值和方向。

这里和我们之前介绍的图像梯度计算中,多了一个方向,我们用​来表示:

3.应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。

对于每个像素,判断其是否为边缘像素。具体做法是检查梯度幅值沿着梯度方向上的两侧像素,如果当前像素的梯度幅值最大,则将其保留为边缘像素,否则将其抑制为非边缘像素。

4.应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘

根据设定的高阈值和低阈值,对经过非极大值抑制的图像进行分类。如果像素的梯度幅值高于高阈值,则将其确定为强边缘像素;如果像素的梯度幅值低于低阈值,则将其确定为弱边缘像素;如果像素的梯度幅值介于低阈值和高阈值之间,则根据其是否与强边缘像素相连来确定其是否为边缘像素。具体如下图所示

5.通过抑制孤立的弱边缘最终完成边缘检测

Canny边缘检测算法通过上述步骤,能够在图像中准确地检测到边缘,并且能够剔除噪声和细小的边缘。由于其高精度和可调节的参数,Canny边缘检测广泛应用于图像处理、计算机视觉和模式识别等领域。

下面我们调用Opencv中的cv2.Canny()函数实现,具体代码格式如下:

ini 复制代码
edges = cv2.Canny(img, threshold1, threshold2)

其中,threshold1threshold2是用于双阈值检测的阈值参数。通常,我们设定threshold1的值应该是threshold2的一半或者是三分之一。

我们现在来讨论一下这两个参数的影响,当minval设置的越小,我们能检测到的边缘就越多,当maxval设置的越大,我们能检测到的边缘就越少。

因此,在实际应用中,我们要根据自己的需求进行调整。下面我们来看一个具体的例子,还是使用小狗洋气的照片,我们将两组阈值分别设为80,160和50,100,看一下他们的区别

scss 复制代码
import cv2
​
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()
    
img=cv2.imread("yangqi.jpg",cv2.IMREAD_GRAYSCALE)
​
v1=cv2.Canny(img,80,160) 
v2=cv2.Canny(img,50,100)
​
res = np.hstack((v1,v2)) #将图片水平堆砌
cv_show(res,'res')
​

我们对比一下两张图:

  • 左边阈值为:80,160
  • 右边阈值为:50,100

可以看到右边这张图检测到的边缘更多。

相关推荐
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile8 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5778 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert