Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

文章链接

核心思想是通过instruction让LLM来优化问题本身,从而达到更好的效果,且这种针对问题的优化可以跟其他的prompt技术,如CoT或者Least-to-Most相结合。

作者提出了一些重述问题的准则:

(1)简短:问题不要太长,确保容易理解

(2)清晰:问题表述清晰,能量化的部分就量化

(3)聚焦:想问的问题应该突出

(4)清除无关信息

作者说因为不好构建数据库,所以训练一个模型来搞这件事很麻烦,他们转而寻求不用训练的办法。

在zero-shot的setting下,方法很简单,通过给LLM instruction让LLM按照之前说的准则修改问题表述。而在few-shot的setting下,作者会展示一些样例给LLM,让LLM参照样例去移除无关信息、重排条件、整合相关条件等,如下

注意到右侧还有个An,按照作者的说法这是问题的答案,然而这个答案似乎不太对 ,显然左边的数学题答案应该是1220+510=290,不知道作者是粗心大意了还是LLM真的做错了😂总而言之,这个过程表达的意思是改进和做题交替进行,如果连续两次得到的答案相同,说明答案收敛,以此作为输出,作者称其为progressive problem-refining。

上述重写问题的效果则如下图所示,

可以看到在davinci-003的情况下表现均有所提升,且基本上progressive>few-shot>zero-shot,说明refinement是有效果的。以及下面是在不同LLM上的效果。

之后,作者还展示了该方法和其他prompt方法结合,比如CoT和Least-to-Most,均有提升。

最后,作者针对progressive中的两个变量:迭代次数和最终答案选取做了消融实验。结果表明迭代次数越多,性能提升越大。同时在迭代次数少的时候采信最后一次迭代的答案正确率高,而次数多了以后投票的正确率高。

相关推荐
技术路上的探险家1 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like1 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a1 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者2 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗2 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信3 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235863 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs3 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习