Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

文章链接

核心思想是通过instruction让LLM来优化问题本身,从而达到更好的效果,且这种针对问题的优化可以跟其他的prompt技术,如CoT或者Least-to-Most相结合。

作者提出了一些重述问题的准则:

(1)简短:问题不要太长,确保容易理解

(2)清晰:问题表述清晰,能量化的部分就量化

(3)聚焦:想问的问题应该突出

(4)清除无关信息

作者说因为不好构建数据库,所以训练一个模型来搞这件事很麻烦,他们转而寻求不用训练的办法。

在zero-shot的setting下,方法很简单,通过给LLM instruction让LLM按照之前说的准则修改问题表述。而在few-shot的setting下,作者会展示一些样例给LLM,让LLM参照样例去移除无关信息、重排条件、整合相关条件等,如下

注意到右侧还有个An,按照作者的说法这是问题的答案,然而这个答案似乎不太对 ,显然左边的数学题答案应该是1220+510=290,不知道作者是粗心大意了还是LLM真的做错了😂总而言之,这个过程表达的意思是改进和做题交替进行,如果连续两次得到的答案相同,说明答案收敛,以此作为输出,作者称其为progressive problem-refining。

上述重写问题的效果则如下图所示,

可以看到在davinci-003的情况下表现均有所提升,且基本上progressive>few-shot>zero-shot,说明refinement是有效果的。以及下面是在不同LLM上的效果。

之后,作者还展示了该方法和其他prompt方法结合,比如CoT和Least-to-Most,均有提升。

最后,作者针对progressive中的两个变量:迭代次数和最终答案选取做了消融实验。结果表明迭代次数越多,性能提升越大。同时在迭代次数少的时候采信最后一次迭代的答案正确率高,而次数多了以后投票的正确率高。

相关推荐
阿坡RPA7 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049937 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c10 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清11 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh11 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员11 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物12 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技