OpenCV(四十三):Shi-Tomas角点检测

1.Shi-Tomas角点检测原理

Shi-Tomasi(也称为Good Features to Track)角点检测算法是一种改进的角点检测方法,它基于Harris角点检测算法,并针对一些不足进行了改进。

与Harris角点检测不同,Shi-Tomasi使用了更简化的角点响应函数。它选择了自相关矩阵M的较小特征值λmin作为评价角点的依据:

角点响应函数即为较小特征值。

角点判断如图所示:

  • 当λ1和λ2都小于λmin时,为平面区域
  • 当λ1和λ2都大于λmin时,为角点
  • 当λ1和λ2只有一个大于λmin时,为边缘区域

2.检测Shi-Tomas角点函数goodFeaturesToTrack()

void cv::goodFeaturesToTrack ( InputArray image,

OutputArray corners,

int maxCorners,

double qualityLevel,

double minDistance,

InputArray mask = noArray(),

int blockSize = 3,

bool useHarrisDetector =false,

double k = 0.04

)

  • corners:检测到角点的输出量
  • maxCorners:要寻找的角点数目。
  • qualityLevel: 角点阙值与最佳角点的关系,又称质量等级,当参数为0.01,表示角点阙值是最佳角点的0.01倍
  • minDistance:两个角点之间的最小欧式距离
  • mask:掩码矩阵,表示检测角点的区域。
  • blockSize:计算梯度协方差矩阵的尺寸。
  • useHarrisDetector:是否使用Harris角点
  • k:Haris检测角点过程中的常值权重系数

3.示例代码

复制代码
void  Tomas_f(Mat mat){
    Mat gray;
    cvtColor(mat,gray,COLOR_BGR2GRAY);
    //提取角点
    int maxCorners=100;//检测角点数目
    double quality_level=0.01;//质量等级
    double  minDistance=0.04;//两个角点之间的最小欧式距离
    vector<Point2f> corners;
    goodFeaturesToTrack(gray,corners,maxCorners,quality_level,minDistance,Mat(),3, false);
    //绘制角点
    vector<KeyPoint> keyPoints;//存放角点的KeyPoint类,用于后期绘制角点时使用
    for(int i=0;i<corners.size();i++){
        //将角点存放在KeyPoint类中
        KeyPoint keyPoint;
        keyPoint.pt=corners[i];
        keyPoints.push_back(keyPoint);
    }
    //用drwaKeyPoints()函数绘制角点坐标
    drawKeypoints(mat,keyPoints,mat);
    imwrite("/sdcard/DCIM/mat.png",mat);
}
相关推荐
running thunderbolt4 分钟前
项目---网络通信组件JsonRpc
linux·服务器·c语言·开发语言·网络·c++·性能优化
mtouch33319 分钟前
GIS+VR地理信息虚拟现实XR MR AR
大数据·人工智能·ar·无人机·xr·vr·mr
小马学嵌入式~28 分钟前
堆排序原理与实现详解
开发语言·数据结构·学习·算法
青岛少儿编程-王老师31 分钟前
CCF编程能力等级认证GESP—C++6级—20250927
java·c++·算法
一人の梅雨33 分钟前
1688 拍立淘接口深度开发:从图像识别到供应链匹配的技术实现
人工智能·算法·计算机视觉
dundunmm1 小时前
【数据集】WebQuestions
人工智能·llm·数据集·知识库问答·知识库
ajassi20001 小时前
开源 C++ QT QML 开发(十)通讯--串口
c++·qt·开源
Janspran1 小时前
监控系统2 - framebuffer
c++
却道天凉_好个秋1 小时前
OpenCV(五):鼠标控制
人工智能·opencv·鼠标控制
Miraitowa_cheems1 小时前
LeetCode算法日记 - Day 64: 岛屿的最大面积、被围绕的区域
java·算法·leetcode·决策树·职场和发展·深度优先·推荐算法