OpenCV(四十三):Shi-Tomas角点检测

1.Shi-Tomas角点检测原理

Shi-Tomasi(也称为Good Features to Track)角点检测算法是一种改进的角点检测方法,它基于Harris角点检测算法,并针对一些不足进行了改进。

与Harris角点检测不同,Shi-Tomasi使用了更简化的角点响应函数。它选择了自相关矩阵M的较小特征值λmin作为评价角点的依据:

角点响应函数即为较小特征值。

角点判断如图所示:

  • 当λ1和λ2都小于λmin时,为平面区域
  • 当λ1和λ2都大于λmin时,为角点
  • 当λ1和λ2只有一个大于λmin时,为边缘区域

2.检测Shi-Tomas角点函数goodFeaturesToTrack()

void cv::goodFeaturesToTrack ( InputArray image,

OutputArray corners,

int maxCorners,

double qualityLevel,

double minDistance,

InputArray mask = noArray(),

int blockSize = 3,

bool useHarrisDetector =false,

double k = 0.04

)

  • corners:检测到角点的输出量
  • maxCorners:要寻找的角点数目。
  • qualityLevel: 角点阙值与最佳角点的关系,又称质量等级,当参数为0.01,表示角点阙值是最佳角点的0.01倍
  • minDistance:两个角点之间的最小欧式距离
  • mask:掩码矩阵,表示检测角点的区域。
  • blockSize:计算梯度协方差矩阵的尺寸。
  • useHarrisDetector:是否使用Harris角点
  • k:Haris检测角点过程中的常值权重系数

3.示例代码

复制代码
void  Tomas_f(Mat mat){
    Mat gray;
    cvtColor(mat,gray,COLOR_BGR2GRAY);
    //提取角点
    int maxCorners=100;//检测角点数目
    double quality_level=0.01;//质量等级
    double  minDistance=0.04;//两个角点之间的最小欧式距离
    vector<Point2f> corners;
    goodFeaturesToTrack(gray,corners,maxCorners,quality_level,minDistance,Mat(),3, false);
    //绘制角点
    vector<KeyPoint> keyPoints;//存放角点的KeyPoint类,用于后期绘制角点时使用
    for(int i=0;i<corners.size();i++){
        //将角点存放在KeyPoint类中
        KeyPoint keyPoint;
        keyPoint.pt=corners[i];
        keyPoints.push_back(keyPoint);
    }
    //用drwaKeyPoints()函数绘制角点坐标
    drawKeypoints(mat,keyPoints,mat);
    imwrite("/sdcard/DCIM/mat.png",mat);
}
相关推荐
胡萝卜3.025 分钟前
掌握C++ map:高效键值对操作指南
开发语言·数据结构·c++·人工智能·map
松岛雾奈.2301 小时前
机器学习--PCA降维算法
人工智能·算法·机器学习
5***79001 小时前
机器学习社区机器学习社区:推动技术进步与创新的引擎
人工智能·机器学习
物联网软硬件开发-轨物科技1 小时前
【轨物交流】海盐县组织部调研轨物科技 深化产学研用协同创新
人工智能·科技
Olafur_zbj1 小时前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
电子_咸鱼1 小时前
【STL string 全解析:接口详解、测试实战与模拟实现】
开发语言·c++·vscode·python·算法·leetcode
kk哥88991 小时前
印刷 / 表单处理专属!Acrobat 2025 AI 加持 PDF 编辑 + 批量处理效率翻倍,安装教程
人工智能
sweet丶1 小时前
适合iOS开发的一种缓存策略YYCache库 的原理
算法·架构
说私域1 小时前
基于开源AI智能客服、AI智能名片与S2B2C商城小程序的新社群用户进化策略研究
人工智能·小程序
是宇写的啊2 小时前
算法—滑动窗口
算法