OpenCV(四十三):Shi-Tomas角点检测

1.Shi-Tomas角点检测原理

Shi-Tomasi(也称为Good Features to Track)角点检测算法是一种改进的角点检测方法,它基于Harris角点检测算法,并针对一些不足进行了改进。

与Harris角点检测不同,Shi-Tomasi使用了更简化的角点响应函数。它选择了自相关矩阵M的较小特征值λmin作为评价角点的依据:

角点响应函数即为较小特征值。

角点判断如图所示:

  • 当λ1和λ2都小于λmin时,为平面区域
  • 当λ1和λ2都大于λmin时,为角点
  • 当λ1和λ2只有一个大于λmin时,为边缘区域

2.检测Shi-Tomas角点函数goodFeaturesToTrack()

void cv::goodFeaturesToTrack ( InputArray image,

OutputArray corners,

int maxCorners,

double qualityLevel,

double minDistance,

InputArray mask = noArray(),

int blockSize = 3,

bool useHarrisDetector =false,

double k = 0.04

)

  • corners:检测到角点的输出量
  • maxCorners:要寻找的角点数目。
  • qualityLevel: 角点阙值与最佳角点的关系,又称质量等级,当参数为0.01,表示角点阙值是最佳角点的0.01倍
  • minDistance:两个角点之间的最小欧式距离
  • mask:掩码矩阵,表示检测角点的区域。
  • blockSize:计算梯度协方差矩阵的尺寸。
  • useHarrisDetector:是否使用Harris角点
  • k:Haris检测角点过程中的常值权重系数

3.示例代码

复制代码
void  Tomas_f(Mat mat){
    Mat gray;
    cvtColor(mat,gray,COLOR_BGR2GRAY);
    //提取角点
    int maxCorners=100;//检测角点数目
    double quality_level=0.01;//质量等级
    double  minDistance=0.04;//两个角点之间的最小欧式距离
    vector<Point2f> corners;
    goodFeaturesToTrack(gray,corners,maxCorners,quality_level,minDistance,Mat(),3, false);
    //绘制角点
    vector<KeyPoint> keyPoints;//存放角点的KeyPoint类,用于后期绘制角点时使用
    for(int i=0;i<corners.size();i++){
        //将角点存放在KeyPoint类中
        KeyPoint keyPoint;
        keyPoint.pt=corners[i];
        keyPoints.push_back(keyPoint);
    }
    //用drwaKeyPoints()函数绘制角点坐标
    drawKeypoints(mat,keyPoints,mat);
    imwrite("/sdcard/DCIM/mat.png",mat);
}
相关推荐
m0_6501082430 分钟前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹1 小时前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
骑着猪去兜风.2 小时前
线段树(二)
数据结构·算法
AKAMAI3 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
fengfuyao9853 小时前
竞争性自适应重加权算法(CARS)的MATLAB实现
算法
散峰而望3 小时前
C++数组(二)(算法竞赛)
开发语言·c++·算法·github
leoufung3 小时前
LeetCode 92 反转链表 II 全流程详解
算法·leetcode·链表
银空飞羽3 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
wyhwust4 小时前
交换排序法&冒泡排序法& 选择排序法&插入排序的算法步骤
数据结构·算法·排序算法
cg50174 小时前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert