Pytorch实现RNN预测模型并使用C++相应的ONNX模型推理

Pytorch实现RNN模型

代码

python 复制代码
import torch
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, seq_len, input_size, hidden_size, output_size, num_layers, device):
        super(RNN, self).__init__()
        self._seq_len = seq_len
        self._input_size = input_size
        self._output_size = output_size
        self._hidden_size = hidden_size
        self._device = device
        self._num_layers = num_layers

        self.rnn = nn.RNN(
            input_size=input_size,
            hidden_size=self._hidden_size,
            num_layers=self._num_layers,
            batch_first=True
        )

        self.fc = nn.Linear(self._seq_len * self._hidden_size, self._output_size)

    def forward(self, x, hidden_prev):
        out, hidden_prev = self.rnn(x, hidden_prev)
        out = out.contiguous().view(out.shape[0], -1)
        out = self.fc(out)
        return out, hidden_prev

seq_len = 10
batch_size = 20
input_size = 10
output_size = 10
hidden_size = 32
num_layers = 2
model = RNN(seq_len, input_size, hidden_size, output_size, num_layers, "cpu")
hidden_prev = torch.zeros(num_layers, batch_size, hidden_size).to("cpu")
model.eval() 

input_names = ["input", "hidden_prev_in"]
output_names  = ["output", "hidden_prev_out"]

x = torch.randn((batch_size, seq_len, input_size))
y, hidden_prev = model(x, hidden_prev)
print(x.shape)
print(hidden_prev.shape)
print(y.shape)
print(hidden_prev.shape)

torch.onnx.export(model, (x, hidden_prev), 'RNN.onnx', verbose=True, input_names=input_names, output_names=output_names,
  dynamic_axes={'input':[0], 'hidden_prev_in':[1], 'output':[0], 'hidden_prev_out':[1]} )

import onnx
model = onnx.load("RNN.onnx")
print("load model done.")
onnx.checker.check_model(model)
print(onnx.helper.printable_graph(model.graph))
print("check model done.")

运行结果

Shell 复制代码
torch.Size([20, 10, 10])
torch.Size([2, 20, 32])
torch.Size([20, 10])
torch.Size([2, 20, 32])
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input input
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input hidden_prev
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input output
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/symbolic_opset9.py:4322: UserWarning: Exporting a model to ONNX with a batch_size other than 1, with a variable length with RNN_TANH can cause an error when running the ONNX model with a different batch size. Make sure to save the model with a batch size of 1, or define the initial states (h0/c0) as inputs of the model. 
  + "or define the initial states (h0/c0) as inputs of the model. "
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/_internal/jit_utils.py:258: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:688: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  graph, params_dict, GLOBALS.export_onnx_opset_version
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:1179: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  graph, params_dict, GLOBALS.export_onnx_opset_version
Exported graph: graph(%input : Float(*, 10, 10, strides=[100, 10, 1], requires_grad=0, device=cpu),
      %hidden_prev.1 : Float(2, *, 32, strides=[640, 32, 1], requires_grad=1, device=cpu),
      %fc.weight : Float(10, 320, strides=[320, 1], requires_grad=1, device=cpu),
      %fc.bias : Float(10, strides=[1], requires_grad=1, device=cpu),
      %onnx::RNN_58 : Float(1, 32, 10, strides=[320, 10, 1], requires_grad=0, device=cpu),
      %onnx::RNN_59 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_60 : Float(1, 64, strides=[64, 1], requires_grad=0, device=cpu),
      %onnx::RNN_62 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_63 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_64 : Float(1, 64, strides=[64, 1], requires_grad=0, device=cpu)):
  %/rnn/Transpose_output_0 : Float(10, *, 10, device=cpu) = onnx::Transpose[perm=[1, 0, 2], onnx_name="/rnn/Transpose"](%input), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %onnx::RNN_13 : Tensor? = prim::Constant(), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_1_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant_1"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_2_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_2"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Slice_output_0 : Float(1, *, 32, device=cpu) = onnx::Slice[onnx_name="/rnn/Slice"](%hidden_prev.1, %/rnn/Constant_1_output_0, %/rnn/Constant_2_output_0, %/rnn/Constant_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/RNN_output_0 : Float(10, 1, *, 32, device=cpu), %/rnn/RNN_output_1 : Float(1, *, 32, device=cpu) = onnx::RNN[activations=["Tanh"], hidden_size=32, onnx_name="/rnn/RNN"](%/rnn/Transpose_output_0, %onnx::RNN_58, %onnx::RNN_59, %onnx::RNN_60, %onnx::RNN_13, %/rnn/Slice_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_3_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_3"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Squeeze_output_0 : Float(10, *, 32, device=cpu) = onnx::Squeeze[onnx_name="/rnn/Squeeze"](%/rnn/RNN_output_0, %/rnn/Constant_3_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_4_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant_4"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_5_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_5"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_6_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={2}, onnx_name="/rnn/Constant_6"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Slice_1_output_0 : Float(1, *, 32, device=cpu) = onnx::Slice[onnx_name="/rnn/Slice_1"](%hidden_prev.1, %/rnn/Constant_5_output_0, %/rnn/Constant_6_output_0, %/rnn/Constant_4_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/RNN_1_output_0 : Float(10, 1, *, 32, device=cpu), %/rnn/RNN_1_output_1 : Float(1, *, 32, device=cpu) = onnx::RNN[activations=["Tanh"], hidden_size=32, onnx_name="/rnn/RNN_1"](%/rnn/Squeeze_output_0, %onnx::RNN_62, %onnx::RNN_63, %onnx::RNN_64, %onnx::RNN_13, %/rnn/Slice_1_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_7_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_7"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Squeeze_1_output_0 : Float(10, *, 32, device=cpu) = onnx::Squeeze[onnx_name="/rnn/Squeeze_1"](%/rnn/RNN_1_output_0, %/rnn/Constant_7_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Transpose_1_output_0 : Float(*, 10, 32, strides=[320, 32, 1], requires_grad=1, device=cpu) = onnx::Transpose[perm=[1, 0, 2], onnx_name="/rnn/Transpose_1"](%/rnn/Squeeze_1_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %hidden_prev : Float(2, *, 32, strides=[640, 32, 1], requires_grad=1, device=cpu) = onnx::Concat[axis=0, onnx_name="/rnn/Concat"](%/rnn/RNN_output_1, %/rnn/RNN_1_output_1), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/Shape_output_0 : Long(3, strides=[1], device=cpu) = onnx::Shape[onnx_name="/Shape"](%/rnn/Transpose_1_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Constant_output_0 : Long(device=cpu) = onnx::Constant[value={0}, onnx_name="/Constant"](), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Gather_output_0 : Long(device=cpu) = onnx::Gather[axis=0, onnx_name="/Gather"](%/Shape_output_0, %/Constant_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %onnx::Unsqueeze_50 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}]()
  %/Unsqueeze_output_0 : Long(1, strides=[1], device=cpu) = onnx::Unsqueeze[onnx_name="/Unsqueeze"](%/Gather_output_0, %onnx::Unsqueeze_50), scope: __main__.RNN::
  %/Constant_1_output_0 : Long(1, strides=[1], requires_grad=0, device=cpu) = onnx::Constant[value={-1}, onnx_name="/Constant_1"](), scope: __main__.RNN::
  %/Concat_output_0 : Long(2, strides=[1], device=cpu) = onnx::Concat[axis=0, onnx_name="/Concat"](%/Unsqueeze_output_0, %/Constant_1_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Reshape_output_0 : Float(*, *, strides=[320, 1], requires_grad=1, device=cpu) = onnx::Reshape[allowzero=0, onnx_name="/Reshape"](%/rnn/Transpose_1_output_0, %/Concat_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %output : Float(*, 10, strides=[10, 1], requires_grad=1, device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1, onnx_name="/fc/Gemm"](%/Reshape_output_0, %fc.weight, %fc.bias), scope: __main__.RNN::/torch.nn.modules.linear.Linear::fc # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/linear.py:114:0
  return (%output, %hidden_prev)

load model done.
graph torch_jit (
  %input[FLOAT, input_dynamic_axes_1x10x10]
  %hidden_prev.1[FLOAT, 2xhidden_prev.1_dim_1x32]
) initializers (
  %fc.weight[FLOAT, 10x320]
  %fc.bias[FLOAT, 10]
  %onnx::RNN_58[FLOAT, 1x32x10]
  %onnx::RNN_59[FLOAT, 1x32x32]
  %onnx::RNN_60[FLOAT, 1x64]
  %onnx::RNN_62[FLOAT, 1x32x32]
  %onnx::RNN_63[FLOAT, 1x32x32]
  %onnx::RNN_64[FLOAT, 1x64]
) {
  %/rnn/Transpose_output_0 = Transpose[perm = [1, 0, 2]](%input)
  %/rnn/Constant_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_2_output_0 = Constant[value = <Tensor>]()
  %/rnn/Slice_output_0 = Slice(%hidden_prev.1, %/rnn/Constant_1_output_0, %/rnn/Constant_2_output_0, %/rnn/Constant_output_0)
  %/rnn/RNN_output_0, %/rnn/RNN_output_1 = RNN[activations = ['Tanh'], hidden_size = 32](%/rnn/Transpose_output_0, %onnx::RNN_58, %onnx::RNN_59, %onnx::RNN_60, %, %/rnn/Slice_output_0)
  %/rnn/Constant_3_output_0 = Constant[value = <Tensor>]()
  %/rnn/Squeeze_output_0 = Squeeze(%/rnn/RNN_output_0, %/rnn/Constant_3_output_0)
  %/rnn/Constant_4_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_5_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_6_output_0 = Constant[value = <Tensor>]()
  %/rnn/Slice_1_output_0 = Slice(%hidden_prev.1, %/rnn/Constant_5_output_0, %/rnn/Constant_6_output_0, %/rnn/Constant_4_output_0)
  %/rnn/RNN_1_output_0, %/rnn/RNN_1_output_1 = RNN[activations = ['Tanh'], hidden_size = 32](%/rnn/Squeeze_output_0, %onnx::RNN_62, %onnx::RNN_63, %onnx::RNN_64, %, %/rnn/Slice_1_output_0)
  %/rnn/Constant_7_output_0 = Constant[value = <Tensor>]()
  %/rnn/Squeeze_1_output_0 = Squeeze(%/rnn/RNN_1_output_0, %/rnn/Constant_7_output_0)
  %/rnn/Transpose_1_output_0 = Transpose[perm = [1, 0, 2]](%/rnn/Squeeze_1_output_0)
  %hidden_prev = Concat[axis = 0](%/rnn/RNN_output_1, %/rnn/RNN_1_output_1)
  %/Shape_output_0 = Shape(%/rnn/Transpose_1_output_0)
  %/Constant_output_0 = Constant[value = <Scalar Tensor []>]()
  %/Gather_output_0 = Gather[axis = 0](%/Shape_output_0, %/Constant_output_0)
  %onnx::Unsqueeze_50 = Constant[value = <Tensor>]()
  %/Unsqueeze_output_0 = Unsqueeze(%/Gather_output_0, %onnx::Unsqueeze_50)
  %/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/Concat_output_0 = Concat[axis = 0](%/Unsqueeze_output_0, %/Constant_1_output_0)
  %/Reshape_output_0 = Reshape[allowzero = 0](%/rnn/Transpose_1_output_0, %/Concat_output_0)
  %output = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %output, %hidden_prev
}
check model done.

C++调用ONNX

代码

cpp 复制代码
vector<float> testOnnxRNN() {
    //设置为VERBOSE,方便控制台输出时看到是使用了cpu还是gpu执行
    //Ort::Env env(ORT_LOGGING_LEVEL_VERBOSE, "test");
    Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "Default");
    Ort::SessionOptions session_options;

    session_options.SetIntraOpNumThreads(5); // 使用五个线程执行op,提升速度
    // 第二个参数代表GPU device_id = 0,注释这行就是cpu执行
    //OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);

    #ifdef _WIN32
        const wchar_t* model_path = L"C:\\Users\\xxx\\Desktop\\RNN.onnx";
    #else
        const char* model_path = "C:\\Users\\xxx\\Desktop\\RNN.onnx";
    #endif

    wprintf(L"%s\n", model_path);

    Ort::Session session(env, model_path, session_options);
    Ort::AllocatorWithDefaultOptions allocator;

    size_t num_input_nodes = session.GetInputCount();
    size_t num_output_nodes = session.GetOutputCount();

    std::vector<const char*> input_node_names = { "input" , "hidden_prev_in" }; 
    std::vector<const char*> output_node_names = { "output" , "hidden_prev_out" };

    const int input_size = 10;
    const int output_size = 10;
    const int batch_size = 1;
    const int seq_len = 10;
    const int num_layers = 2;
    const int hidden_size = 32;

    std::vector<int64_t> input_node_dims = { batch_size, seq_len, input_size };
    size_t input_tensor_size = batch_size * seq_len * input_size;
    std::vector<float> input_tensor_values(input_tensor_size);
    for (unsigned int i = 0; i < input_tensor_size; i++) {
        input_tensor_values[i] = (float)i / (input_tensor_size + 1);
    }
    auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), 3);
    assert(input_tensor.IsTensor());

    std::vector<int64_t> hidden_prev_in_node_dims = { num_layers, batch_size, hidden_size };
    size_t hidden_prev_in_tensor_size = num_layers * batch_size * hidden_size;
    std::vector<float> hidden_prev_in_tensor_values(hidden_prev_in_tensor_size);
    for (unsigned int i = 0; i < hidden_prev_in_tensor_size; i++) {
        hidden_prev_in_tensor_values[i] = (float)i / (hidden_prev_in_tensor_size + 1);
    }
    auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value hidden_prev_in_tensor = Ort::Value::CreateTensor<float>(mask_memory_info, hidden_prev_in_tensor_values.data(), hidden_prev_in_tensor_size, hidden_prev_in_node_dims.data(), 3);
    assert(hidden_prev_in_tensor.IsTensor());

    std::vector<Ort::Value> ort_inputs;
    ort_inputs.push_back(std::move(input_tensor));
    ort_inputs.push_back(std::move(hidden_prev_in_tensor));

    vector<float> ret;
    try
    {
        auto output_tensors = session.Run(Ort::RunOptions{ nullptr }, input_node_names.data(), ort_inputs.data(), ort_inputs.size(), output_node_names.data(), 2);
        float* output = output_tensors[0].GetTensorMutableData<float>();
        float* hidden_prev_out = output_tensors[1].GetTensorMutableData<float>();
           
        // output
        for (int i = 0; i < output_size; i++) {
            ret.emplace_back(output[i]);
            std::cout << output[i] << " ";
        }
        std::cout << "\n";

        // hidden_prev_out
        //for (int i = 0; i < num_layers * batch_size * hidden_size; i++) {
        //    std::cout << hidden_prev_out[i] << "\t";
        //}
        //std::cout << "\n";
    }
    catch (const std::exception& e)
    {
        std::cout << e.what() << std::endl;
    }
    return ret;
}

运行结果

bash 复制代码
C:\Users\xxx\Desktop\RNN.onnx
0.00296116 0.104443 -0.104239 0.249864 -0.155839 0.019295 0.0458037 -0.0596341 -0.129019 -0.014682
相关推荐
姓刘的哦24 分钟前
Qt中的QWebEngineView
数据库·c++·qt
C_player_00126 分钟前
——贪心算法——
c++·算法·贪心算法
DogDaoDao28 分钟前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
SundayBear1 小时前
QT零基础入门教程
c++·qt
西猫雷婶1 小时前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
kyle~2 小时前
排序---插入排序(Insertion Sort)
c语言·数据结构·c++·算法·排序算法
奔跑吧邓邓子2 小时前
【C++实战⑦】C++函数实战:从基础到项目应用
c++·实战·函数
HMBBLOVEPDX2 小时前
C++(静态函数)
开发语言·c++
张晓~183399481213 小时前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
一枝小雨4 小时前
【C++】list 容器操作
开发语言·c++·笔记·list·学习笔记