Pytorch实现RNN预测模型并使用C++相应的ONNX模型推理

Pytorch实现RNN模型

代码

python 复制代码
import torch
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, seq_len, input_size, hidden_size, output_size, num_layers, device):
        super(RNN, self).__init__()
        self._seq_len = seq_len
        self._input_size = input_size
        self._output_size = output_size
        self._hidden_size = hidden_size
        self._device = device
        self._num_layers = num_layers

        self.rnn = nn.RNN(
            input_size=input_size,
            hidden_size=self._hidden_size,
            num_layers=self._num_layers,
            batch_first=True
        )

        self.fc = nn.Linear(self._seq_len * self._hidden_size, self._output_size)

    def forward(self, x, hidden_prev):
        out, hidden_prev = self.rnn(x, hidden_prev)
        out = out.contiguous().view(out.shape[0], -1)
        out = self.fc(out)
        return out, hidden_prev

seq_len = 10
batch_size = 20
input_size = 10
output_size = 10
hidden_size = 32
num_layers = 2
model = RNN(seq_len, input_size, hidden_size, output_size, num_layers, "cpu")
hidden_prev = torch.zeros(num_layers, batch_size, hidden_size).to("cpu")
model.eval() 

input_names = ["input", "hidden_prev_in"]
output_names  = ["output", "hidden_prev_out"]

x = torch.randn((batch_size, seq_len, input_size))
y, hidden_prev = model(x, hidden_prev)
print(x.shape)
print(hidden_prev.shape)
print(y.shape)
print(hidden_prev.shape)

torch.onnx.export(model, (x, hidden_prev), 'RNN.onnx', verbose=True, input_names=input_names, output_names=output_names,
  dynamic_axes={'input':[0], 'hidden_prev_in':[1], 'output':[0], 'hidden_prev_out':[1]} )

import onnx
model = onnx.load("RNN.onnx")
print("load model done.")
onnx.checker.check_model(model)
print(onnx.helper.printable_graph(model.graph))
print("check model done.")

运行结果

Shell 复制代码
torch.Size([20, 10, 10])
torch.Size([2, 20, 32])
torch.Size([20, 10])
torch.Size([2, 20, 32])
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input input
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input hidden_prev
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input output
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/symbolic_opset9.py:4322: UserWarning: Exporting a model to ONNX with a batch_size other than 1, with a variable length with RNN_TANH can cause an error when running the ONNX model with a different batch size. Make sure to save the model with a batch size of 1, or define the initial states (h0/c0) as inputs of the model. 
  + "or define the initial states (h0/c0) as inputs of the model. "
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/_internal/jit_utils.py:258: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:688: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  graph, params_dict, GLOBALS.export_onnx_opset_version
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:1179: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  graph, params_dict, GLOBALS.export_onnx_opset_version
Exported graph: graph(%input : Float(*, 10, 10, strides=[100, 10, 1], requires_grad=0, device=cpu),
      %hidden_prev.1 : Float(2, *, 32, strides=[640, 32, 1], requires_grad=1, device=cpu),
      %fc.weight : Float(10, 320, strides=[320, 1], requires_grad=1, device=cpu),
      %fc.bias : Float(10, strides=[1], requires_grad=1, device=cpu),
      %onnx::RNN_58 : Float(1, 32, 10, strides=[320, 10, 1], requires_grad=0, device=cpu),
      %onnx::RNN_59 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_60 : Float(1, 64, strides=[64, 1], requires_grad=0, device=cpu),
      %onnx::RNN_62 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_63 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_64 : Float(1, 64, strides=[64, 1], requires_grad=0, device=cpu)):
  %/rnn/Transpose_output_0 : Float(10, *, 10, device=cpu) = onnx::Transpose[perm=[1, 0, 2], onnx_name="/rnn/Transpose"](%input), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %onnx::RNN_13 : Tensor? = prim::Constant(), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_1_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant_1"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_2_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_2"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Slice_output_0 : Float(1, *, 32, device=cpu) = onnx::Slice[onnx_name="/rnn/Slice"](%hidden_prev.1, %/rnn/Constant_1_output_0, %/rnn/Constant_2_output_0, %/rnn/Constant_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/RNN_output_0 : Float(10, 1, *, 32, device=cpu), %/rnn/RNN_output_1 : Float(1, *, 32, device=cpu) = onnx::RNN[activations=["Tanh"], hidden_size=32, onnx_name="/rnn/RNN"](%/rnn/Transpose_output_0, %onnx::RNN_58, %onnx::RNN_59, %onnx::RNN_60, %onnx::RNN_13, %/rnn/Slice_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_3_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_3"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Squeeze_output_0 : Float(10, *, 32, device=cpu) = onnx::Squeeze[onnx_name="/rnn/Squeeze"](%/rnn/RNN_output_0, %/rnn/Constant_3_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_4_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant_4"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_5_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_5"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_6_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={2}, onnx_name="/rnn/Constant_6"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Slice_1_output_0 : Float(1, *, 32, device=cpu) = onnx::Slice[onnx_name="/rnn/Slice_1"](%hidden_prev.1, %/rnn/Constant_5_output_0, %/rnn/Constant_6_output_0, %/rnn/Constant_4_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/RNN_1_output_0 : Float(10, 1, *, 32, device=cpu), %/rnn/RNN_1_output_1 : Float(1, *, 32, device=cpu) = onnx::RNN[activations=["Tanh"], hidden_size=32, onnx_name="/rnn/RNN_1"](%/rnn/Squeeze_output_0, %onnx::RNN_62, %onnx::RNN_63, %onnx::RNN_64, %onnx::RNN_13, %/rnn/Slice_1_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_7_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_7"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Squeeze_1_output_0 : Float(10, *, 32, device=cpu) = onnx::Squeeze[onnx_name="/rnn/Squeeze_1"](%/rnn/RNN_1_output_0, %/rnn/Constant_7_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Transpose_1_output_0 : Float(*, 10, 32, strides=[320, 32, 1], requires_grad=1, device=cpu) = onnx::Transpose[perm=[1, 0, 2], onnx_name="/rnn/Transpose_1"](%/rnn/Squeeze_1_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %hidden_prev : Float(2, *, 32, strides=[640, 32, 1], requires_grad=1, device=cpu) = onnx::Concat[axis=0, onnx_name="/rnn/Concat"](%/rnn/RNN_output_1, %/rnn/RNN_1_output_1), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/Shape_output_0 : Long(3, strides=[1], device=cpu) = onnx::Shape[onnx_name="/Shape"](%/rnn/Transpose_1_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Constant_output_0 : Long(device=cpu) = onnx::Constant[value={0}, onnx_name="/Constant"](), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Gather_output_0 : Long(device=cpu) = onnx::Gather[axis=0, onnx_name="/Gather"](%/Shape_output_0, %/Constant_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %onnx::Unsqueeze_50 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}]()
  %/Unsqueeze_output_0 : Long(1, strides=[1], device=cpu) = onnx::Unsqueeze[onnx_name="/Unsqueeze"](%/Gather_output_0, %onnx::Unsqueeze_50), scope: __main__.RNN::
  %/Constant_1_output_0 : Long(1, strides=[1], requires_grad=0, device=cpu) = onnx::Constant[value={-1}, onnx_name="/Constant_1"](), scope: __main__.RNN::
  %/Concat_output_0 : Long(2, strides=[1], device=cpu) = onnx::Concat[axis=0, onnx_name="/Concat"](%/Unsqueeze_output_0, %/Constant_1_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Reshape_output_0 : Float(*, *, strides=[320, 1], requires_grad=1, device=cpu) = onnx::Reshape[allowzero=0, onnx_name="/Reshape"](%/rnn/Transpose_1_output_0, %/Concat_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %output : Float(*, 10, strides=[10, 1], requires_grad=1, device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1, onnx_name="/fc/Gemm"](%/Reshape_output_0, %fc.weight, %fc.bias), scope: __main__.RNN::/torch.nn.modules.linear.Linear::fc # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/linear.py:114:0
  return (%output, %hidden_prev)

load model done.
graph torch_jit (
  %input[FLOAT, input_dynamic_axes_1x10x10]
  %hidden_prev.1[FLOAT, 2xhidden_prev.1_dim_1x32]
) initializers (
  %fc.weight[FLOAT, 10x320]
  %fc.bias[FLOAT, 10]
  %onnx::RNN_58[FLOAT, 1x32x10]
  %onnx::RNN_59[FLOAT, 1x32x32]
  %onnx::RNN_60[FLOAT, 1x64]
  %onnx::RNN_62[FLOAT, 1x32x32]
  %onnx::RNN_63[FLOAT, 1x32x32]
  %onnx::RNN_64[FLOAT, 1x64]
) {
  %/rnn/Transpose_output_0 = Transpose[perm = [1, 0, 2]](%input)
  %/rnn/Constant_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_2_output_0 = Constant[value = <Tensor>]()
  %/rnn/Slice_output_0 = Slice(%hidden_prev.1, %/rnn/Constant_1_output_0, %/rnn/Constant_2_output_0, %/rnn/Constant_output_0)
  %/rnn/RNN_output_0, %/rnn/RNN_output_1 = RNN[activations = ['Tanh'], hidden_size = 32](%/rnn/Transpose_output_0, %onnx::RNN_58, %onnx::RNN_59, %onnx::RNN_60, %, %/rnn/Slice_output_0)
  %/rnn/Constant_3_output_0 = Constant[value = <Tensor>]()
  %/rnn/Squeeze_output_0 = Squeeze(%/rnn/RNN_output_0, %/rnn/Constant_3_output_0)
  %/rnn/Constant_4_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_5_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_6_output_0 = Constant[value = <Tensor>]()
  %/rnn/Slice_1_output_0 = Slice(%hidden_prev.1, %/rnn/Constant_5_output_0, %/rnn/Constant_6_output_0, %/rnn/Constant_4_output_0)
  %/rnn/RNN_1_output_0, %/rnn/RNN_1_output_1 = RNN[activations = ['Tanh'], hidden_size = 32](%/rnn/Squeeze_output_0, %onnx::RNN_62, %onnx::RNN_63, %onnx::RNN_64, %, %/rnn/Slice_1_output_0)
  %/rnn/Constant_7_output_0 = Constant[value = <Tensor>]()
  %/rnn/Squeeze_1_output_0 = Squeeze(%/rnn/RNN_1_output_0, %/rnn/Constant_7_output_0)
  %/rnn/Transpose_1_output_0 = Transpose[perm = [1, 0, 2]](%/rnn/Squeeze_1_output_0)
  %hidden_prev = Concat[axis = 0](%/rnn/RNN_output_1, %/rnn/RNN_1_output_1)
  %/Shape_output_0 = Shape(%/rnn/Transpose_1_output_0)
  %/Constant_output_0 = Constant[value = <Scalar Tensor []>]()
  %/Gather_output_0 = Gather[axis = 0](%/Shape_output_0, %/Constant_output_0)
  %onnx::Unsqueeze_50 = Constant[value = <Tensor>]()
  %/Unsqueeze_output_0 = Unsqueeze(%/Gather_output_0, %onnx::Unsqueeze_50)
  %/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/Concat_output_0 = Concat[axis = 0](%/Unsqueeze_output_0, %/Constant_1_output_0)
  %/Reshape_output_0 = Reshape[allowzero = 0](%/rnn/Transpose_1_output_0, %/Concat_output_0)
  %output = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %output, %hidden_prev
}
check model done.

C++调用ONNX

代码

cpp 复制代码
vector<float> testOnnxRNN() {
    //设置为VERBOSE,方便控制台输出时看到是使用了cpu还是gpu执行
    //Ort::Env env(ORT_LOGGING_LEVEL_VERBOSE, "test");
    Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "Default");
    Ort::SessionOptions session_options;

    session_options.SetIntraOpNumThreads(5); // 使用五个线程执行op,提升速度
    // 第二个参数代表GPU device_id = 0,注释这行就是cpu执行
    //OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);

    #ifdef _WIN32
        const wchar_t* model_path = L"C:\\Users\\xxx\\Desktop\\RNN.onnx";
    #else
        const char* model_path = "C:\\Users\\xxx\\Desktop\\RNN.onnx";
    #endif

    wprintf(L"%s\n", model_path);

    Ort::Session session(env, model_path, session_options);
    Ort::AllocatorWithDefaultOptions allocator;

    size_t num_input_nodes = session.GetInputCount();
    size_t num_output_nodes = session.GetOutputCount();

    std::vector<const char*> input_node_names = { "input" , "hidden_prev_in" }; 
    std::vector<const char*> output_node_names = { "output" , "hidden_prev_out" };

    const int input_size = 10;
    const int output_size = 10;
    const int batch_size = 1;
    const int seq_len = 10;
    const int num_layers = 2;
    const int hidden_size = 32;

    std::vector<int64_t> input_node_dims = { batch_size, seq_len, input_size };
    size_t input_tensor_size = batch_size * seq_len * input_size;
    std::vector<float> input_tensor_values(input_tensor_size);
    for (unsigned int i = 0; i < input_tensor_size; i++) {
        input_tensor_values[i] = (float)i / (input_tensor_size + 1);
    }
    auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), 3);
    assert(input_tensor.IsTensor());

    std::vector<int64_t> hidden_prev_in_node_dims = { num_layers, batch_size, hidden_size };
    size_t hidden_prev_in_tensor_size = num_layers * batch_size * hidden_size;
    std::vector<float> hidden_prev_in_tensor_values(hidden_prev_in_tensor_size);
    for (unsigned int i = 0; i < hidden_prev_in_tensor_size; i++) {
        hidden_prev_in_tensor_values[i] = (float)i / (hidden_prev_in_tensor_size + 1);
    }
    auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value hidden_prev_in_tensor = Ort::Value::CreateTensor<float>(mask_memory_info, hidden_prev_in_tensor_values.data(), hidden_prev_in_tensor_size, hidden_prev_in_node_dims.data(), 3);
    assert(hidden_prev_in_tensor.IsTensor());

    std::vector<Ort::Value> ort_inputs;
    ort_inputs.push_back(std::move(input_tensor));
    ort_inputs.push_back(std::move(hidden_prev_in_tensor));

    vector<float> ret;
    try
    {
        auto output_tensors = session.Run(Ort::RunOptions{ nullptr }, input_node_names.data(), ort_inputs.data(), ort_inputs.size(), output_node_names.data(), 2);
        float* output = output_tensors[0].GetTensorMutableData<float>();
        float* hidden_prev_out = output_tensors[1].GetTensorMutableData<float>();
           
        // output
        for (int i = 0; i < output_size; i++) {
            ret.emplace_back(output[i]);
            std::cout << output[i] << " ";
        }
        std::cout << "\n";

        // hidden_prev_out
        //for (int i = 0; i < num_layers * batch_size * hidden_size; i++) {
        //    std::cout << hidden_prev_out[i] << "\t";
        //}
        //std::cout << "\n";
    }
    catch (const std::exception& e)
    {
        std::cout << e.what() << std::endl;
    }
    return ret;
}

运行结果

bash 复制代码
C:\Users\xxx\Desktop\RNN.onnx
0.00296116 0.104443 -0.104239 0.249864 -0.155839 0.019295 0.0458037 -0.0596341 -0.129019 -0.014682
相关推荐
SpikeKing3 分钟前
Server - 使用 Docker 配置 PyTorch 研发环境
pytorch·docker·llm
5:0024 分钟前
云备份项目
linux·开发语言·c++
乄夜1 小时前
嵌入式面试高频(5)!!!C++语言(嵌入式八股文,嵌入式面经)
c语言·c++·单片机·嵌入式硬件·物联网·面试·职场和发展
YYDS3141 小时前
C++动态规划-01背包
开发语言·c++·动态规划
wydaicls2 小时前
十一.C++ 类 -- 面向对象思想
开发语言·c++
姜君竹2 小时前
QT的工程文件.pro文件
开发语言·c++·qt·系统架构
思捻如枫2 小时前
C++数据结构和算法代码模板总结——算法部分
数据结构·c++
weixin_478689763 小时前
C++ 对 C 的兼容性
java·c语言·c++
k要开心3 小时前
C++概念以及基础框架语法
开发语言·c++
weixin_307779134 小时前
Linux下GCC和C++实现统计Clickhouse数据仓库指定表中各字段的空值、空字符串或零值比例
linux·运维·c++·数据仓库·clickhouse