Pytorch实现RNN预测模型并使用C++相应的ONNX模型推理

Pytorch实现RNN模型

代码

python 复制代码
import torch
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, seq_len, input_size, hidden_size, output_size, num_layers, device):
        super(RNN, self).__init__()
        self._seq_len = seq_len
        self._input_size = input_size
        self._output_size = output_size
        self._hidden_size = hidden_size
        self._device = device
        self._num_layers = num_layers

        self.rnn = nn.RNN(
            input_size=input_size,
            hidden_size=self._hidden_size,
            num_layers=self._num_layers,
            batch_first=True
        )

        self.fc = nn.Linear(self._seq_len * self._hidden_size, self._output_size)

    def forward(self, x, hidden_prev):
        out, hidden_prev = self.rnn(x, hidden_prev)
        out = out.contiguous().view(out.shape[0], -1)
        out = self.fc(out)
        return out, hidden_prev

seq_len = 10
batch_size = 20
input_size = 10
output_size = 10
hidden_size = 32
num_layers = 2
model = RNN(seq_len, input_size, hidden_size, output_size, num_layers, "cpu")
hidden_prev = torch.zeros(num_layers, batch_size, hidden_size).to("cpu")
model.eval() 

input_names = ["input", "hidden_prev_in"]
output_names  = ["output", "hidden_prev_out"]

x = torch.randn((batch_size, seq_len, input_size))
y, hidden_prev = model(x, hidden_prev)
print(x.shape)
print(hidden_prev.shape)
print(y.shape)
print(hidden_prev.shape)

torch.onnx.export(model, (x, hidden_prev), 'RNN.onnx', verbose=True, input_names=input_names, output_names=output_names,
  dynamic_axes={'input':[0], 'hidden_prev_in':[1], 'output':[0], 'hidden_prev_out':[1]} )

import onnx
model = onnx.load("RNN.onnx")
print("load model done.")
onnx.checker.check_model(model)
print(onnx.helper.printable_graph(model.graph))
print("check model done.")

运行结果

Shell 复制代码
torch.Size([20, 10, 10])
torch.Size([2, 20, 32])
torch.Size([20, 10])
torch.Size([2, 20, 32])
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input input
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input hidden_prev
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:2041: UserWarning: No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input output
  "No names were found for specified dynamic axes of provided input."
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/symbolic_opset9.py:4322: UserWarning: Exporting a model to ONNX with a batch_size other than 1, with a variable length with RNN_TANH can cause an error when running the ONNX model with a different batch size. Make sure to save the model with a batch size of 1, or define the initial states (h0/c0) as inputs of the model. 
  + "or define the initial states (h0/c0) as inputs of the model. "
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/_internal/jit_utils.py:258: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:688: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  graph, params_dict, GLOBALS.export_onnx_opset_version
/home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/onnx/utils.py:1179: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  graph, params_dict, GLOBALS.export_onnx_opset_version
Exported graph: graph(%input : Float(*, 10, 10, strides=[100, 10, 1], requires_grad=0, device=cpu),
      %hidden_prev.1 : Float(2, *, 32, strides=[640, 32, 1], requires_grad=1, device=cpu),
      %fc.weight : Float(10, 320, strides=[320, 1], requires_grad=1, device=cpu),
      %fc.bias : Float(10, strides=[1], requires_grad=1, device=cpu),
      %onnx::RNN_58 : Float(1, 32, 10, strides=[320, 10, 1], requires_grad=0, device=cpu),
      %onnx::RNN_59 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_60 : Float(1, 64, strides=[64, 1], requires_grad=0, device=cpu),
      %onnx::RNN_62 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_63 : Float(1, 32, 32, strides=[1024, 32, 1], requires_grad=0, device=cpu),
      %onnx::RNN_64 : Float(1, 64, strides=[64, 1], requires_grad=0, device=cpu)):
  %/rnn/Transpose_output_0 : Float(10, *, 10, device=cpu) = onnx::Transpose[perm=[1, 0, 2], onnx_name="/rnn/Transpose"](%input), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %onnx::RNN_13 : Tensor? = prim::Constant(), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_1_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant_1"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_2_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_2"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Slice_output_0 : Float(1, *, 32, device=cpu) = onnx::Slice[onnx_name="/rnn/Slice"](%hidden_prev.1, %/rnn/Constant_1_output_0, %/rnn/Constant_2_output_0, %/rnn/Constant_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/RNN_output_0 : Float(10, 1, *, 32, device=cpu), %/rnn/RNN_output_1 : Float(1, *, 32, device=cpu) = onnx::RNN[activations=["Tanh"], hidden_size=32, onnx_name="/rnn/RNN"](%/rnn/Transpose_output_0, %onnx::RNN_58, %onnx::RNN_59, %onnx::RNN_60, %onnx::RNN_13, %/rnn/Slice_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_3_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_3"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Squeeze_output_0 : Float(10, *, 32, device=cpu) = onnx::Squeeze[onnx_name="/rnn/Squeeze"](%/rnn/RNN_output_0, %/rnn/Constant_3_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_4_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}, onnx_name="/rnn/Constant_4"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_5_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_5"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_6_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={2}, onnx_name="/rnn/Constant_6"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Slice_1_output_0 : Float(1, *, 32, device=cpu) = onnx::Slice[onnx_name="/rnn/Slice_1"](%hidden_prev.1, %/rnn/Constant_5_output_0, %/rnn/Constant_6_output_0, %/rnn/Constant_4_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/RNN_1_output_0 : Float(10, 1, *, 32, device=cpu), %/rnn/RNN_1_output_1 : Float(1, *, 32, device=cpu) = onnx::RNN[activations=["Tanh"], hidden_size=32, onnx_name="/rnn/RNN_1"](%/rnn/Squeeze_output_0, %onnx::RNN_62, %onnx::RNN_63, %onnx::RNN_64, %onnx::RNN_13, %/rnn/Slice_1_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Constant_7_output_0 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={1}, onnx_name="/rnn/Constant_7"](), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Squeeze_1_output_0 : Float(10, *, 32, device=cpu) = onnx::Squeeze[onnx_name="/rnn/Squeeze_1"](%/rnn/RNN_1_output_0, %/rnn/Constant_7_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/rnn/Transpose_1_output_0 : Float(*, 10, 32, strides=[320, 32, 1], requires_grad=1, device=cpu) = onnx::Transpose[perm=[1, 0, 2], onnx_name="/rnn/Transpose_1"](%/rnn/Squeeze_1_output_0), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %hidden_prev : Float(2, *, 32, strides=[640, 32, 1], requires_grad=1, device=cpu) = onnx::Concat[axis=0, onnx_name="/rnn/Concat"](%/rnn/RNN_output_1, %/rnn/RNN_1_output_1), scope: __main__.RNN::/torch.nn.modules.rnn.RNN::rnn # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/rnn.py:478:0
  %/Shape_output_0 : Long(3, strides=[1], device=cpu) = onnx::Shape[onnx_name="/Shape"](%/rnn/Transpose_1_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Constant_output_0 : Long(device=cpu) = onnx::Constant[value={0}, onnx_name="/Constant"](), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Gather_output_0 : Long(device=cpu) = onnx::Gather[axis=0, onnx_name="/Gather"](%/Shape_output_0, %/Constant_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %onnx::Unsqueeze_50 : Long(1, strides=[1], device=cpu) = onnx::Constant[value={0}]()
  %/Unsqueeze_output_0 : Long(1, strides=[1], device=cpu) = onnx::Unsqueeze[onnx_name="/Unsqueeze"](%/Gather_output_0, %onnx::Unsqueeze_50), scope: __main__.RNN::
  %/Constant_1_output_0 : Long(1, strides=[1], requires_grad=0, device=cpu) = onnx::Constant[value={-1}, onnx_name="/Constant_1"](), scope: __main__.RNN::
  %/Concat_output_0 : Long(2, strides=[1], device=cpu) = onnx::Concat[axis=0, onnx_name="/Concat"](%/Unsqueeze_output_0, %/Constant_1_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %/Reshape_output_0 : Float(*, *, strides=[320, 1], requires_grad=1, device=cpu) = onnx::Reshape[allowzero=0, onnx_name="/Reshape"](%/rnn/Transpose_1_output_0, %/Concat_output_0), scope: __main__.RNN:: # /zengli/20230320/ao/test/test_onnx_rnn.py:25:0
  %output : Float(*, 10, strides=[10, 1], requires_grad=1, device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1, onnx_name="/fc/Gemm"](%/Reshape_output_0, %fc.weight, %fc.bias), scope: __main__.RNN::/torch.nn.modules.linear.Linear::fc # /home/ubuntu/anaconda3/envs/py37/lib/python3.7/site-packages/torch/nn/modules/linear.py:114:0
  return (%output, %hidden_prev)

load model done.
graph torch_jit (
  %input[FLOAT, input_dynamic_axes_1x10x10]
  %hidden_prev.1[FLOAT, 2xhidden_prev.1_dim_1x32]
) initializers (
  %fc.weight[FLOAT, 10x320]
  %fc.bias[FLOAT, 10]
  %onnx::RNN_58[FLOAT, 1x32x10]
  %onnx::RNN_59[FLOAT, 1x32x32]
  %onnx::RNN_60[FLOAT, 1x64]
  %onnx::RNN_62[FLOAT, 1x32x32]
  %onnx::RNN_63[FLOAT, 1x32x32]
  %onnx::RNN_64[FLOAT, 1x64]
) {
  %/rnn/Transpose_output_0 = Transpose[perm = [1, 0, 2]](%input)
  %/rnn/Constant_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_2_output_0 = Constant[value = <Tensor>]()
  %/rnn/Slice_output_0 = Slice(%hidden_prev.1, %/rnn/Constant_1_output_0, %/rnn/Constant_2_output_0, %/rnn/Constant_output_0)
  %/rnn/RNN_output_0, %/rnn/RNN_output_1 = RNN[activations = ['Tanh'], hidden_size = 32](%/rnn/Transpose_output_0, %onnx::RNN_58, %onnx::RNN_59, %onnx::RNN_60, %, %/rnn/Slice_output_0)
  %/rnn/Constant_3_output_0 = Constant[value = <Tensor>]()
  %/rnn/Squeeze_output_0 = Squeeze(%/rnn/RNN_output_0, %/rnn/Constant_3_output_0)
  %/rnn/Constant_4_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_5_output_0 = Constant[value = <Tensor>]()
  %/rnn/Constant_6_output_0 = Constant[value = <Tensor>]()
  %/rnn/Slice_1_output_0 = Slice(%hidden_prev.1, %/rnn/Constant_5_output_0, %/rnn/Constant_6_output_0, %/rnn/Constant_4_output_0)
  %/rnn/RNN_1_output_0, %/rnn/RNN_1_output_1 = RNN[activations = ['Tanh'], hidden_size = 32](%/rnn/Squeeze_output_0, %onnx::RNN_62, %onnx::RNN_63, %onnx::RNN_64, %, %/rnn/Slice_1_output_0)
  %/rnn/Constant_7_output_0 = Constant[value = <Tensor>]()
  %/rnn/Squeeze_1_output_0 = Squeeze(%/rnn/RNN_1_output_0, %/rnn/Constant_7_output_0)
  %/rnn/Transpose_1_output_0 = Transpose[perm = [1, 0, 2]](%/rnn/Squeeze_1_output_0)
  %hidden_prev = Concat[axis = 0](%/rnn/RNN_output_1, %/rnn/RNN_1_output_1)
  %/Shape_output_0 = Shape(%/rnn/Transpose_1_output_0)
  %/Constant_output_0 = Constant[value = <Scalar Tensor []>]()
  %/Gather_output_0 = Gather[axis = 0](%/Shape_output_0, %/Constant_output_0)
  %onnx::Unsqueeze_50 = Constant[value = <Tensor>]()
  %/Unsqueeze_output_0 = Unsqueeze(%/Gather_output_0, %onnx::Unsqueeze_50)
  %/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/Concat_output_0 = Concat[axis = 0](%/Unsqueeze_output_0, %/Constant_1_output_0)
  %/Reshape_output_0 = Reshape[allowzero = 0](%/rnn/Transpose_1_output_0, %/Concat_output_0)
  %output = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %output, %hidden_prev
}
check model done.

C++调用ONNX

代码

cpp 复制代码
vector<float> testOnnxRNN() {
    //设置为VERBOSE,方便控制台输出时看到是使用了cpu还是gpu执行
    //Ort::Env env(ORT_LOGGING_LEVEL_VERBOSE, "test");
    Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "Default");
    Ort::SessionOptions session_options;

    session_options.SetIntraOpNumThreads(5); // 使用五个线程执行op,提升速度
    // 第二个参数代表GPU device_id = 0,注释这行就是cpu执行
    //OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);

    #ifdef _WIN32
        const wchar_t* model_path = L"C:\\Users\\xxx\\Desktop\\RNN.onnx";
    #else
        const char* model_path = "C:\\Users\\xxx\\Desktop\\RNN.onnx";
    #endif

    wprintf(L"%s\n", model_path);

    Ort::Session session(env, model_path, session_options);
    Ort::AllocatorWithDefaultOptions allocator;

    size_t num_input_nodes = session.GetInputCount();
    size_t num_output_nodes = session.GetOutputCount();

    std::vector<const char*> input_node_names = { "input" , "hidden_prev_in" }; 
    std::vector<const char*> output_node_names = { "output" , "hidden_prev_out" };

    const int input_size = 10;
    const int output_size = 10;
    const int batch_size = 1;
    const int seq_len = 10;
    const int num_layers = 2;
    const int hidden_size = 32;

    std::vector<int64_t> input_node_dims = { batch_size, seq_len, input_size };
    size_t input_tensor_size = batch_size * seq_len * input_size;
    std::vector<float> input_tensor_values(input_tensor_size);
    for (unsigned int i = 0; i < input_tensor_size; i++) {
        input_tensor_values[i] = (float)i / (input_tensor_size + 1);
    }
    auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), 3);
    assert(input_tensor.IsTensor());

    std::vector<int64_t> hidden_prev_in_node_dims = { num_layers, batch_size, hidden_size };
    size_t hidden_prev_in_tensor_size = num_layers * batch_size * hidden_size;
    std::vector<float> hidden_prev_in_tensor_values(hidden_prev_in_tensor_size);
    for (unsigned int i = 0; i < hidden_prev_in_tensor_size; i++) {
        hidden_prev_in_tensor_values[i] = (float)i / (hidden_prev_in_tensor_size + 1);
    }
    auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value hidden_prev_in_tensor = Ort::Value::CreateTensor<float>(mask_memory_info, hidden_prev_in_tensor_values.data(), hidden_prev_in_tensor_size, hidden_prev_in_node_dims.data(), 3);
    assert(hidden_prev_in_tensor.IsTensor());

    std::vector<Ort::Value> ort_inputs;
    ort_inputs.push_back(std::move(input_tensor));
    ort_inputs.push_back(std::move(hidden_prev_in_tensor));

    vector<float> ret;
    try
    {
        auto output_tensors = session.Run(Ort::RunOptions{ nullptr }, input_node_names.data(), ort_inputs.data(), ort_inputs.size(), output_node_names.data(), 2);
        float* output = output_tensors[0].GetTensorMutableData<float>();
        float* hidden_prev_out = output_tensors[1].GetTensorMutableData<float>();
           
        // output
        for (int i = 0; i < output_size; i++) {
            ret.emplace_back(output[i]);
            std::cout << output[i] << " ";
        }
        std::cout << "\n";

        // hidden_prev_out
        //for (int i = 0; i < num_layers * batch_size * hidden_size; i++) {
        //    std::cout << hidden_prev_out[i] << "\t";
        //}
        //std::cout << "\n";
    }
    catch (const std::exception& e)
    {
        std::cout << e.what() << std::endl;
    }
    return ret;
}

运行结果

bash 复制代码
C:\Users\xxx\Desktop\RNN.onnx
0.00296116 0.104443 -0.104239 0.249864 -0.155839 0.019295 0.0458037 -0.0596341 -0.129019 -0.014682
相关推荐
虾球xz6 分钟前
游戏引擎学习第280天:精简化的流式实体sim
数据库·c++·学习·游戏引擎
虾球xz1 小时前
游戏引擎学习第281天:在房间之间为摄像机添加动画效果
c++·人工智能·学习·游戏引擎
扶尔魔ocy1 小时前
【Linux C/C++开发】轻量级关系型数据库SQLite开发(包含性能测试代码)
linux·数据库·c++·sqlite
ptu小鹏1 小时前
list重点接口及模拟实现
数据结构·c++·list
__BMGT()2 小时前
C++ QT 打开图片
前端·c++·qt
顾子茵2 小时前
c++从入门到精通(五)--异常处理,命名空间,多继承与虚继承
开发语言·c++
白白白飘3 小时前
pytorch 15.1 学习率调度基本概念与手动实现方法
人工智能·pytorch·学习
YueiL4 小时前
基于RK3588的智慧农场系统开发|RS485总线|华为云IOT|node-red|MQTT
c++·物联网·华为云·rk3588·rs485
二进制人工智能4 小时前
【OpenGL学习】(二)OpenGL渲染简单图形
c++·opengl
Dream it possible!4 小时前
LeetCode 热题 100_寻找重复数(100_287_中等_C++)(技巧)(暴力解法;哈希集合;二分查找)
c++·leetcode·哈希算法