弱监督目标检测:ALWOD: Active Learning for Weakly-Supervised Object Detection

论文作者:Yuting Wang,Velibor Ilic,Jiatong Li,Branislav Kisacanin,Vladimir Pavlovic

作者单位:Rutgers University;The Institute for Artificial Intelligence Research and Development of Serbia;Nvidia Corporation

论文链接:http://arxiv.org/abs/2309.07914v1

项目链接:https://github.com/seqam-lab/ALWOD

内容简介:

1)方向:目标检测(Object Detection)

2)应用:视觉任务中的目标检测

3)背景:目标检测在缺乏大规模训练数据集和准确的目标定位标签的情况下仍然存在挑战。

4)方法:本文提出了一种名为ALWOD的新框架,通过将主动学习(Active Learning)与弱监督和半监督目标检测范式相结合,解决了这个问题。首先,利用极小的标记集合和大量弱标记图像集合作为主动学习的初始状态,提出了一种新的辅助图像生成策略。然后,提出了一种新的主动学习获取函数,利用学生-教师目标检测对的不一致性和不确定性,有效地提出了最具信息量的图像进行注释。最后,为了完成主动学习循环,引入了一项新的标注任务,即基于模型提出的检测结果的选择和修正,这种方法在迅速而有效地标注信息丰富的图像方面表现出色。

5)结果:在几个具有挑战性的基准测试中,ALWOD显著缩小了仅基于部分标记但经过策略选择的图像实例进行训练的目标检测器与完全标记数据依赖的目标检测器之间的差距。代码可以在https://github.com/seqam-lab/ALWOD上公开获取。

相关推荐
草莓熊Lotso2 分钟前
Qt 进阶核心:UI 开发 + 项目解析 + 内存管理实战(从 Hello World 到对象树)
运维·开发语言·c++·人工智能·qt·ui·智能手机
Light605 小时前
智链全球,韧性履约:AI赋能新一代海外EPC/EPCM项目管理解决方案
人工智能·数字孪生·风险管理·ai赋能·海外epc/epcm·智慧项目管理·协同增效
棒棒的皮皮6 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
2501_941804326 小时前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch7 小时前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
档案宝档案管理7 小时前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
wenzhangli77 小时前
Ooder A2UI 框架中的矢量图形全面指南
人工智能
躺柒7 小时前
读共生:4.0时代的人机关系07工作者
人工智能·ai·自动化·人机交互·人机对话·人机关系
码丽莲梦露7 小时前
ICLR2025年与运筹优化相关文章
人工智能·运筹优化
ai_top_trends8 小时前
2026 年度工作计划 PPT 模板与 AI 生成方法详解
人工智能·python·powerpoint