弱监督目标检测:ALWOD: Active Learning for Weakly-Supervised Object Detection

论文作者:Yuting Wang,Velibor Ilic,Jiatong Li,Branislav Kisacanin,Vladimir Pavlovic

作者单位:Rutgers University;The Institute for Artificial Intelligence Research and Development of Serbia;Nvidia Corporation

论文链接:http://arxiv.org/abs/2309.07914v1

项目链接:https://github.com/seqam-lab/ALWOD

内容简介:

1)方向:目标检测(Object Detection)

2)应用:视觉任务中的目标检测

3)背景:目标检测在缺乏大规模训练数据集和准确的目标定位标签的情况下仍然存在挑战。

4)方法:本文提出了一种名为ALWOD的新框架,通过将主动学习(Active Learning)与弱监督和半监督目标检测范式相结合,解决了这个问题。首先,利用极小的标记集合和大量弱标记图像集合作为主动学习的初始状态,提出了一种新的辅助图像生成策略。然后,提出了一种新的主动学习获取函数,利用学生-教师目标检测对的不一致性和不确定性,有效地提出了最具信息量的图像进行注释。最后,为了完成主动学习循环,引入了一项新的标注任务,即基于模型提出的检测结果的选择和修正,这种方法在迅速而有效地标注信息丰富的图像方面表现出色。

5)结果:在几个具有挑战性的基准测试中,ALWOD显著缩小了仅基于部分标记但经过策略选择的图像实例进行训练的目标检测器与完全标记数据依赖的目标检测器之间的差距。代码可以在https://github.com/seqam-lab/ALWOD上公开获取。

相关推荐
百胜软件@百胜软件20 分钟前
黄飞对话阿里云AI专家:当零售中台拥有AI大脑,未来将去向何方?
人工智能·阿里云·零售
数科云7 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区7 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南8 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu8 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现8 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_8 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z9 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派9 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor9 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc