弱监督目标检测:ALWOD: Active Learning for Weakly-Supervised Object Detection

论文作者:Yuting Wang,Velibor Ilic,Jiatong Li,Branislav Kisacanin,Vladimir Pavlovic

作者单位:Rutgers University;The Institute for Artificial Intelligence Research and Development of Serbia;Nvidia Corporation

论文链接:http://arxiv.org/abs/2309.07914v1

项目链接:https://github.com/seqam-lab/ALWOD

内容简介:

1)方向:目标检测(Object Detection)

2)应用:视觉任务中的目标检测

3)背景:目标检测在缺乏大规模训练数据集和准确的目标定位标签的情况下仍然存在挑战。

4)方法:本文提出了一种名为ALWOD的新框架,通过将主动学习(Active Learning)与弱监督和半监督目标检测范式相结合,解决了这个问题。首先,利用极小的标记集合和大量弱标记图像集合作为主动学习的初始状态,提出了一种新的辅助图像生成策略。然后,提出了一种新的主动学习获取函数,利用学生-教师目标检测对的不一致性和不确定性,有效地提出了最具信息量的图像进行注释。最后,为了完成主动学习循环,引入了一项新的标注任务,即基于模型提出的检测结果的选择和修正,这种方法在迅速而有效地标注信息丰富的图像方面表现出色。

5)结果:在几个具有挑战性的基准测试中,ALWOD显著缩小了仅基于部分标记但经过策略选择的图像实例进行训练的目标检测器与完全标记数据依赖的目标检测器之间的差距。代码可以在https://github.com/seqam-lab/ALWOD上公开获取。

相关推荐
b***25111 分钟前
激光焊接机如何破解新能源电池制造的三大焊接难题?
人工智能·自动化·制造
AI营销先锋4 分钟前
原圈科技领跑破解B2B增长焦虑
大数据·人工智能·机器学习
新加坡内哥谈技术5 分钟前
Matic 的家庭故事-吸尘器能引发一场机器人革命吗?
人工智能
pusheng20256 分钟前
普晟传感商用一氧化碳探测解决方案:欧洲及中东市场概述
人工智能
叫我:松哥9 分钟前
基于YOLO的图像识别系统,结合Flask、Bootstrap和SQLite,提供图像检测、数据管理和用户交互功能,可以检测80个类别
人工智能·python·yolo·信息可视化·sqlite·flask·bootstrap
老蒋每日coding10 分钟前
AI Agent 设计模式系列(十一)—— 目标设定和监控模式
人工智能·设计模式·langchain
Coovally AI模型快速验证14 分钟前
从“单例模仿”到“多面融合”,视觉上下文学习迈向“团队协作”式提示融合
人工智能·学习·算法·yolo·计算机视觉·人机交互
AI营销干货站18 分钟前
原圈科技AI市场分析
人工智能·microsoft
程序员:钧念24 分钟前
【sh脚本与Python脚本的区别】
开发语言·人工智能·python·机器学习·语言模型·自然语言处理·transformer
明月醉窗台25 分钟前
深度学习(16)YOLO中的置信度和IOU阈值在训练中及推理中后处理结果的影响
人工智能·深度学习·yolo