AWS SAA-C03 #204

An online retail company has more than 50 million active customers and receives more than 25,000 orders each day. The company collects purchase data for customers and stores this data in Amazon S3. Additional customer data is stored in Amazon RDS.

The company wants to make all the data available to various teams so that the teams can perform analytics. The solution must provide the ability to manage fine-grained permissions for the data and must minimize operational overhead.

Which solution will meet these requirements?

A. Migrate the purchase data to write directly to Amazon RDS. Use RDS access controls to limit access.

B. Schedule an AWS Lambda function to periodically copy data from Amazon RDS to Amazon S3. Create an AWS Glue crawler. Use Amazon Athena to query the data. Use S3 policies to limit access.

C. Create a data lake by using AWS Lake Formation. Create an AWS Glue JDBC connection to Amazon RDS. Register the S3 bucket in Lake Formation. Use Lake Formation access controls to limit access.

D. Create an Amazon Redshift cluster. Schedule an AWS Lambda function to periodically copy data from Amazon S3 and Amazon RDS to Amazon Redshift. Use Amazon Redshift access controls to limit access.


Sure, here's why the other options are not as suitable:

A. Migrate the purchase data to write directly to Amazon RDS. Use RDS access controls to limit access.

This option would not meet the requirement to minimize operational overhead. Migrating all purchase data to write directly to Amazon RDS could be a significant task, and managing access controls in RDS could also be complex and time-consuming.

B. Schedule an AWS Lambda function to periodically copy data from Amazon RDS to Amazon S3. Create an AWS Glue crawler. Use Amazon Athena to query the data. Use S3 policies to limit access.

While this solution could work, it doesn't provide the ability to manage fine-grained permissions for the data as effectively as AWS Lake Formation does. S3 policies are not designed for fine-grained access control.

D. Create an Amazon Redshift cluster. Schedule an AWS Lambda function to periodically copy data from Amazon S3 and Amazon RDS to Amazon Redshift. Use Amazon Redshift access controls to limit access.

This solution could also work, but it might not minimize operational overhead because managing an Amazon Redshift cluster and scheduling AWS Lambda functions for data transfer can be complex tasks. Moreover, Redshift is a data warehousing solution and might be overkill for this use case if the primary requirement is just to perform analytics on the data.

The solution that will meet these requirements is:

C. Create a data lake by using AWS Lake Formation. Create an AWS Glue JDBC connection to Amazon RDS. Register the S3 bucket in Lake Formation. Use Lake Formation access controls to limit access.

This solution allows the company to make all the data available to various teams for analytics, manage fine-grained permissions for the data, and minimize operational overhead. AWS Lake Formation simplifies the process of setting up, securing, and managing data lakes. AWS Glue can connect to Amazon RDS using a JDBC connection, and you can register an Amazon S3 bucket in Lake Formation as a data source. Then, you can use Lake Formation's access controls to manage permissions for the data.

相关推荐
专业软件系统开发2 小时前
药品说明书查询系统源码 本地数据库 PHP版本
数据库·查询系统源码·说明书查询源码
冉冰学姐5 小时前
SSM足球爱好者服务平台i387z(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库·ssm 框架·足球爱好者服务平台
大飞记Python5 小时前
部门管理|“编辑部门”功能实现(Django5零基础Web平台)
前端·数据库·python·django
惘嘫、冋渞6 小时前
AWS同一账号下创建自定义VPC并配置不同区域的对等链接
网络·云计算·aws
清风6666667 小时前
基于单片机的智能收银机模拟系统设计
数据库·单片机·毕业设计·nosql·课程设计
资深低代码开发平台专家7 小时前
PostgreSQL 18 发布
数据库·postgresql
悟乙己8 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
与衫8 小时前
在 VS Code 里看清你的数据流向:Gudu SQL Omni 实测体验
数据库·sql
AKAMAI9 小时前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算