【CVPR2020】DEF:Seeing Through Fog Without Seeing Fog论文阅读分析与总结

Challenge:

之前网络架构的设计假设数据流是一致的,即出现在一个模态中的对象也出现在另一个模态中。然而,在恶劣的天气条件下,如雾、雨、雪或极端照明条件,多模态传感器配置中的信息可能不对称。不同传感器在特征提取阶段单独处理,在存在不对称测量失真的情况下,融合性能比单传感器差。

Contribution:

1.第一个恶劣天气下的大型多模态驾驶数据集,激光雷达、相机、雷达、门控近红外传感器和FIR传感器的100k标签

2.提出了由测量熵驱动的自适应特征融合而非proposals级别的融合(无需为这些场景提供大型带注释的训练数据集)

Method:

STF数据集,详见恶劣数据集总结
自适应深度融合:允许在非对称的传感器信息的情况下进行多模态融合。

  • 偏离了最近的BEV投影方案或原始点云输入,因为BeV投影或点云输入不允许深度早期融合,因为他们在早期层中的特征表示本质上与相机特征不同。

  • 使用修改后的VGG网络,conv4-10作为RPN网络输入

  • 为每个特征交换块提供传感器熵,根据可用信息单独缩放每个传感器的连接特征。熵低的区域可以衰减,而熵丰富的区域可以在特征提取中被放大。这样做可以自适应地融合特征提取堆栈本身中的特征

Entropy-steered Fusion

将投影分为16x16的patch,计算每个patch的local measurement entropy(理解为图像熵),pmni理解为第(m,n)个patch灰度为i的概率。pmn理解为第(m,n)个patch的信息熵,所有patch的信息熵和即为该投影的信息熵。

不同模态数据熵在不同情况下的变化:

RGB相机和LiDAR受到后向散射和衰减的影响,雾能见度降低数据熵显著降低。

门控和Radar则没有明显变化。光照情况下,随着亮度降低,RGB和门控数据信息熵明显减少,LiDAR和Radar则变化较少。

Experiments:

由于训练数据获取的天气偏差,只使用所提出数据集的晴朗天气部分进行训练(雾化数据增强),使用多模态天气数据集作为测试集来评估检测性能

相关推荐
觉醒大王1 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王1 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_1 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108242 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108242 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手2 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重
源于花海3 天前
IEEE TIE期刊论文学习——基于元学习与小样本重训练的锂离子电池健康状态估计方法
论文阅读·元学习·电池健康管理·并行网络·小样本重训练
m0_650108243 天前
UniDrive-WM:自动驾驶领域的统一理解、规划与生成世界模型
论文阅读·自动驾驶·轨迹规划·感知、规划与生成融合·场景理解·未来图像生成
蓝田生玉1233 天前
LLaMA论文阅读笔记
论文阅读·笔记·llama
*西瓜3 天前
基于深度学习的视觉水位识别技术与装备
论文阅读·深度学习