Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)

在linux系统上进行多gpu卡的深度学习任务

  • 确保已安装最新的 TensorFlow GPU 版本。
python 复制代码
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
  • 1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通过在命令行输入nvidia-smi来查看:

    如果成功显示了类似上述的GPU信息和驱动版本信息,则说明NVIDIA驱动已经正确安装。

2、导入必要的库,设置可见的gpu设备列表:

python 复制代码
import tensorflow as tf
# 设置可见的GPU设备列表(例如,使用GPU 0、1、2和3)
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpu_devices, 'GPU')
  • 3、创建一个MirroredStrategy对象,该对象将自动复制模型和数据到每个可见的GPU卡上:
python 复制代码
strategy = tf.distribute.MirroredStrategy()
  • 4、在strategy范围内创建和训练模型:
python 复制代码
with strategy.scope():
    # 创建和编译模型
    model = create_model()
    model.compile(...)
    
    # 加载数据
    train_dataset = load_train_data()
    test_dataset = load_test_data()
    
    # 训练模型
    model.fit(train_dataset, validation_data=test_dataset, ...)

以上,在MirroredStrategy范围内创建的模型将自动复制并分布到每个可见的GPU卡上,每个卡都将处理一部分数据。

使用多个 GPU 的最佳做法是使用 tf.distribute.Strategy

以下给出一个官网的简单示例:

python 复制代码
tf.debugging.set_log_device_placement(True)
gpus = tf.config.list_logical_devices('GPU')
strategy = tf.distribute.MirroredStrategy(gpus)
with strategy.scope():
  inputs = tf.keras.layers.Input(shape=(1,))
  predictions = tf.keras.layers.Dense(1)(inputs)
  model = tf.keras.models.Model(inputs=inputs, outputs=predictions)
  model.compile(loss='mse',
                optimizer=tf.keras.optimizers.SGD(learning_rate=0.2))

当然,也有手动的放置方法:

python 复制代码
tf.debugging.set_log_device_placement(True)

gpus = tf.config.list_logical_devices('GPU')
if gpus:
  # Replicate your computation on multiple GPUs
  c = []
  for gpu in gpus:
    with tf.device(gpu.name):
      a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
      b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
      c.append(tf.matmul(a, b))

  with tf.device('/CPU:0'):
    matmul_sum = tf.add_n(c)

  print(matmul_sum)

在tensorflow上使用gpu:https://www.tensorflow.org/guide/gpu?hl=zh-cn

相关推荐
Gaoithe5 小时前
ubuntu 端口复用
linux·运维·ubuntu
德先生&赛先生6 小时前
Linux编程:1、文件编程
linux
程序猿小D6 小时前
第16节 Node.js 文件系统
linux·服务器·前端·node.js·编辑器·vim
多多*7 小时前
微服务网关SpringCloudGateway+SaToken鉴权
linux·开发语言·redis·python·sql·log4j·bootstrap
IT界小黑的对象9 小时前
virtualBox部署ubuntu22.04虚拟机 NAT+host only 宿主机ping不通虚拟机
linux·运维·服务器
SilentCodeY9 小时前
Ubuntu 系统通过防火墙管控 Docker 容器
linux·安全·ubuntu·系统防火墙
deephub9 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化
weixin_527550409 小时前
Linux 环境下高效视频切帧的实用指南
linux·运维·音视频
keson要进步9 小时前
CICD实战(二)-----gitlab的安装与配置
linux·运维·gitlab
藥瓿亭9 小时前
K8S认证|CKS题库+答案| 4. RBAC - RoleBinding
linux·运维·服务器·云原生·容器·kubernetes·cks