GAN学习笔记

1.原始的GAN

1.1原始的损失函数

1.1.1写法1参考1参考2

1.1.2 写法2

where,

  • G = Generator
  • D = Discriminator
  • Pdata(x) = distribution of real data
  • P(z) = distribution of generator
  • x = sample from Pdata(x)
  • z = sample from P(z)
  • D(x) = Discriminator network
  • G(z) = Generator network

1.1.3 写法3: 参考3

1.2Wasserstein损失 参考

2.**Conditional GAN (**CGAN)

2.1 写法1:

The Discriminator has two task

  • Discriminator has tocorrectly label real images which are coming from training data set as "real".
  • Discriminator has to correctly label generated images which are coming from Generator as "fake".

We need to calculate two losses for the Discriminator. The sum of the "fake" image and "real" image loss is the overall Discriminator loss.** So the loss function of the Discriminator is aiming at minimizing the error of predicting real images coming from the dataset and fake images coming from the Generator given their one-hot labels.

The Generator network has one task

  • To create an image that looks as "real" as possible to fool the Discriminator.

The loss function of the Generator minimizes the correct prediction of the Discriminator on fake images conditioned on the specified one-hot labels.

  • The conditioning is performed by feeding y into the both the discriminator and generator as additional input layer.
  • In the generator the prior input noise p_z (z ), and y are combined in joint hidden representation.
  • In the discriminator x and y are presented as inputs and to a discriminative function.
  • The objective function of a two-player minimax game become:

2.2 写法2:

where is a probability distribution over classes, is the probability distribution of real images of class C, and the probability distribution of images generated by the generator when given class label C.

2.3 写法3:参考

相关推荐
IMPYLH21 分钟前
Lua 的 warn 函数
java·开发语言·笔记·junit·lua
半夏知半秋29 分钟前
Elasticsearch Query DSL 指令整理
大数据·数据库·笔记·学习·elasticsearch·搜索引擎·全文检索
BFT白芙堂37 分钟前
Franka机械臂“举一反三”:LLM Trainer如何通过单次演示实现自动化数据生成与长程任务学习
人工智能·学习·机器学习·自动化·模型训练·具身智能·franka
老王熬夜敲代码1 小时前
C++中的mutex、condition_val
c++·笔记·面试
van久1 小时前
.Net Core 学习:Razor Pages中 HTML 表头字段的两种写法对比
学习·html·.netcore
2501_916766541 小时前
【Git学习】Git的tag标签
git·学习
m0_564876841 小时前
卷积学习录
深度学习·学习·cnn
阿蒙Amon2 小时前
JavaScript学习笔记:2.基础语法与数据类型
javascript·笔记·学习
道19932 小时前
PyTorch 从小白到高级全阶段学习大纲(一)
人工智能·pytorch·学习
光影少年2 小时前
前端ai开发需要学习哪些东西?
前端·人工智能·学习