GAN学习笔记

1.原始的GAN

1.1原始的损失函数

1.1.1写法1参考1参考2

1.1.2 写法2

where,

  • G = Generator
  • D = Discriminator
  • Pdata(x) = distribution of real data
  • P(z) = distribution of generator
  • x = sample from Pdata(x)
  • z = sample from P(z)
  • D(x) = Discriminator network
  • G(z) = Generator network

1.1.3 写法3: 参考3

1.2Wasserstein损失 参考

2.**Conditional GAN (**CGAN)

2.1 写法1:

The Discriminator has two task

  • Discriminator has tocorrectly label real images which are coming from training data set as "real".
  • Discriminator has to correctly label generated images which are coming from Generator as "fake".

We need to calculate two losses for the Discriminator. The sum of the "fake" image and "real" image loss is the overall Discriminator loss.** So the loss function of the Discriminator is aiming at minimizing the error of predicting real images coming from the dataset and fake images coming from the Generator given their one-hot labels.

The Generator network has one task

  • To create an image that looks as "real" as possible to fool the Discriminator.

The loss function of the Generator minimizes the correct prediction of the Discriminator on fake images conditioned on the specified one-hot labels.

  • The conditioning is performed by feeding y into the both the discriminator and generator as additional input layer.
  • In the generator the prior input noise p_z (z ), and y are combined in joint hidden representation.
  • In the discriminator x and y are presented as inputs and to a discriminative function.
  • The objective function of a two-player minimax game become:

2.2 写法2:

where is a probability distribution over classes, is the probability distribution of real images of class C, and the probability distribution of images generated by the generator when given class label C.

2.3 写法3:参考

相关推荐
草原上唱山歌6 分钟前
推荐学习的C++书籍
开发语言·c++·学习
安得权12 分钟前
Azure Dataverse 权限设计学习
学习·flask·azure
wtmReiner16 分钟前
山东大学数值计算2026.1大三上期末考试回忆版
笔记·算法
jimmyleeee18 分钟前
人工智能基础知识笔记三十二:向量数据库的查找类型和工作原理
人工智能·笔记
做cv的小昊1 小时前
【TJU】信息检索与分析课程笔记和练习(6)英文数据库检索—web of science
大数据·数据库·笔记·学习·全文检索
Darkershadow1 小时前
蓝牙学习之uuid与mac
python·学习·ble
毛小茛1 小时前
芋道管理系统学习——项目结构
java·学习
北岛寒沫2 小时前
北京大学国家发展研究院 经济学原理课程笔记(第二十五课 开放宏观基本概念)
经验分享·笔记·学习
北京理工大学软件工程2 小时前
代码随想录-C-笔记
笔记
EchoL、2 小时前
浅谈当下深度生成模型:从VAE、GAN、Diffusion、Flow Matching到世界模型
人工智能·神经网络·生成对抗网络