GAN学习笔记

1.原始的GAN

1.1原始的损失函数

1.1.1写法1参考1参考2

1.1.2 写法2

where,

  • G = Generator
  • D = Discriminator
  • Pdata(x) = distribution of real data
  • P(z) = distribution of generator
  • x = sample from Pdata(x)
  • z = sample from P(z)
  • D(x) = Discriminator network
  • G(z) = Generator network

1.1.3 写法3: 参考3

1.2Wasserstein损失 参考

2.**Conditional GAN (**CGAN)

2.1 写法1:

The Discriminator has two task

  • Discriminator has tocorrectly label real images which are coming from training data set as "real".
  • Discriminator has to correctly label generated images which are coming from Generator as "fake".

We need to calculate two losses for the Discriminator. The sum of the "fake" image and "real" image loss is the overall Discriminator loss.** So the loss function of the Discriminator is aiming at minimizing the error of predicting real images coming from the dataset and fake images coming from the Generator given their one-hot labels.

The Generator network has one task

  • To create an image that looks as "real" as possible to fool the Discriminator.

The loss function of the Generator minimizes the correct prediction of the Discriminator on fake images conditioned on the specified one-hot labels.

  • The conditioning is performed by feeding y into the both the discriminator and generator as additional input layer.
  • In the generator the prior input noise p_z (z ), and y are combined in joint hidden representation.
  • In the discriminator x and y are presented as inputs and to a discriminative function.
  • The objective function of a two-player minimax game become:

2.2 写法2:

where is a probability distribution over classes, is the probability distribution of real images of class C, and the probability distribution of images generated by the generator when given class label C.

2.3 写法3:参考

相关推荐
infiniteWei1 小时前
【Lucene】原理学习路线
学习·搜索引擎·全文检索·lucene
follycat1 小时前
[极客大挑战 2019]PHP 1
开发语言·学习·网络安全·php
weixin_518285052 小时前
深度学习笔记11-神经网络
笔记·深度学习·神经网络
并不会5 小时前
常见 CSS 选择器用法
前端·css·学习·html·前端开发·css选择器
龙鸣丿5 小时前
Linux基础学习笔记
linux·笔记·学习
Nu11PointerException7 小时前
JAVA笔记 | ResponseBodyEmitter等异步流式接口快速学习
笔记·学习
亦枫Leonlew9 小时前
三维测量与建模笔记 - 3.3 张正友标定法
笔记·相机标定·三维重建·张正友标定法
考试宝9 小时前
国家宠物美容师职业技能等级评价(高级)理论考试题
经验分享·笔记·职场和发展·学习方法·业界资讯·宠物
黑叶白树11 小时前
简单的签到程序 python笔记
笔记·python
@小博的博客11 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习