Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖

安装时最好更换一下源。

sudo apt-get -y update

sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev python3-numpy

sudo apt-get -y install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev

sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev

sudo apt-get -y install zlib1g-dev libwebp-dev libtiff5-dev libopenexr-dev libgdal-dev libv4l-dev libxine2-dev

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 40976EAF437D05B5

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 3B4FE6ACC0B21F32

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"

sudo apt-get -y update

sudo apt-get -y install libjasper1 libjasper-dev libdc1394-dev

sudo apt-get -y install aptitude

sudo aptitude -y install libgtk-3-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev libgphoto2-dev

****切记先不要安装Anaconda,如果安装了,需要先把它的路径环境路径先注释掉!!!****

2、编译opencv库

2.1 CPU 库流程

准备opencv4.5.1代码

cd opencv4.5.1

mkdir build

cd build

//CPU 库编译

cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cpu -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON -DBUILD_TBB=ON -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..

2.2 //GPU 库流程

2.2.1、下载cuda版本:cuda_11.8.0_520.61.05_linux.run

2.2.2、下载cudnn版本:cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz

**安装cuda和cudnn,参考:https://blog.csdn.net/weixin_49777848/article/details/131684172\*\*

2.2.3、添加Cuda路径

gedit ~/.bashrc

export PATH=/usr/local/cuda-11.8/bin{PATH:+:{PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64{LD_LIBRARY_PATH:+:{LD_LIBRARY_PATH}}

source ~/.bashrc

2.2.4、添加cudnn路径

sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include

sudo cp cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

2.2.5//GPU库编译

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cuda -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DENABLE_FAST_MATH=ON -DWITH_CUDA=ON -DCUDA_FAST_MATH=ON -DCUDA_ARCH_BIN=7.5 -DWITH_CUBLAS=ON -DWITH_CUDNN=ON -DWITH_V4L=ON -DOPENCV_DNN_CUDA=ON -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib4.5.1/modules -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..

make -j24

make install

2.3 可能错误:

错误一:

/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link

解决:

cd /usr/local/cuda-11.8/targets/x86_64-linux/lib/

sudo ln -sf libcudnn_ops_infer.so.8.6.0 libcudnn_ops_infer.so.8.6

sudo ln -sf libcudnn_ops_infer.so.8.6 libcudnn_ops_infer.so.8

其他的一样的操作

3、例子调用(自己测试用,不方便公开)

3.1 把编译好的opencv lib和include库,在/soft/opencv451_cpu/ 和 /soft/opencv451_cuda/目录下,需要拷贝到测试用例对应的lib和include

如果用例在/home/VideoDiagnose下:

sudo cp -r /soft/opencv451_cpu/include/opencv4/opencv2 /home/VideoDiagnose/include

sudo cp /soft/opencv451_cpu/lib/libopencv_world* /home/VideoDiagnose/lib

cd /home/VideoDiagnose

sudo chmod -R 777 *

3.2 添加lib运行环境

sudo -i 先进入root模式

gedit /etc/ld.so.conf.d/VDXN.conf

添加,需要根据自己的实际路径添加:

/home/VideoDiagnose/lib

使其生效:

ldconfig

3.3 进入AlgTest目录下:

make

把生成的algTest拷贝到lib下,进入lib测试目录下,执行:

./algTest ./testData/9_对比度异常/

3.4 缺失的库在export_lib下

  1. opencv4.5.1代码下载地址:

链接: https://pan.baidu.com/s/1jZ-e3r__eZMXShy2XdLucA 提取码: 5zin

相关推荐
whoarethenext2 小时前
使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
开发语言·c++·opencv·mfcc
jndingxin2 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦3 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988944 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03274 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿4 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手4 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志4 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
我就是全世界4 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield4 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习