Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖

安装时最好更换一下源。

sudo apt-get -y update

sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev python3-numpy

sudo apt-get -y install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev

sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev

sudo apt-get -y install zlib1g-dev libwebp-dev libtiff5-dev libopenexr-dev libgdal-dev libv4l-dev libxine2-dev

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 40976EAF437D05B5

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 3B4FE6ACC0B21F32

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"

sudo apt-get -y update

sudo apt-get -y install libjasper1 libjasper-dev libdc1394-dev

sudo apt-get -y install aptitude

sudo aptitude -y install libgtk-3-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev libgphoto2-dev

****切记先不要安装Anaconda,如果安装了,需要先把它的路径环境路径先注释掉!!!****

2、编译opencv库

2.1 CPU 库流程

准备opencv4.5.1代码

cd opencv4.5.1

mkdir build

cd build

//CPU 库编译

cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cpu -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON -DBUILD_TBB=ON -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..

2.2 //GPU 库流程

2.2.1、下载cuda版本:cuda_11.8.0_520.61.05_linux.run

2.2.2、下载cudnn版本:cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz

**安装cuda和cudnn,参考:https://blog.csdn.net/weixin_49777848/article/details/131684172\*\*

2.2.3、添加Cuda路径

gedit ~/.bashrc

export PATH=/usr/local/cuda-11.8/bin{PATH:+:{PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64{LD_LIBRARY_PATH:+:{LD_LIBRARY_PATH}}

source ~/.bashrc

2.2.4、添加cudnn路径

sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include

sudo cp cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

2.2.5//GPU库编译

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cuda -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DENABLE_FAST_MATH=ON -DWITH_CUDA=ON -DCUDA_FAST_MATH=ON -DCUDA_ARCH_BIN=7.5 -DWITH_CUBLAS=ON -DWITH_CUDNN=ON -DWITH_V4L=ON -DOPENCV_DNN_CUDA=ON -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib4.5.1/modules -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..

make -j24

make install

2.3 可能错误:

错误一:

/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link

解决:

cd /usr/local/cuda-11.8/targets/x86_64-linux/lib/

sudo ln -sf libcudnn_ops_infer.so.8.6.0 libcudnn_ops_infer.so.8.6

sudo ln -sf libcudnn_ops_infer.so.8.6 libcudnn_ops_infer.so.8

其他的一样的操作

3、例子调用(自己测试用,不方便公开)

3.1 把编译好的opencv lib和include库,在/soft/opencv451_cpu/ 和 /soft/opencv451_cuda/目录下,需要拷贝到测试用例对应的lib和include

如果用例在/home/VideoDiagnose下:

sudo cp -r /soft/opencv451_cpu/include/opencv4/opencv2 /home/VideoDiagnose/include

sudo cp /soft/opencv451_cpu/lib/libopencv_world* /home/VideoDiagnose/lib

cd /home/VideoDiagnose

sudo chmod -R 777 *

3.2 添加lib运行环境

sudo -i 先进入root模式

gedit /etc/ld.so.conf.d/VDXN.conf

添加,需要根据自己的实际路径添加:

/home/VideoDiagnose/lib

使其生效:

ldconfig

3.3 进入AlgTest目录下:

make

把生成的algTest拷贝到lib下,进入lib测试目录下,执行:

./algTest ./testData/9_对比度异常/

3.4 缺失的库在export_lib下

  1. opencv4.5.1代码下载地址:

链接: https://pan.baidu.com/s/1jZ-e3r__eZMXShy2XdLucA 提取码: 5zin

相关推荐
唯道行4 分钟前
计算机图形学·23 Weiler-Athenton多边形裁剪算法
算法·计算机视觉·几何学·计算机图形学·opengl
汽车仪器仪表相关领域28 分钟前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar34 分钟前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
Byron Loong1 小时前
【半导体】KLA 公司eDR介绍
人工智能
Jay20021111 小时前
【机器学习】31-32 强化学习介绍 & 状态-动作值函数
人工智能·机器学习
测试人社区-千羽1 小时前
大语言模型在软件测试中的应用与挑战
人工智能·测试工具·语言模型·自然语言处理·面试·职场和发展·aigc
niaonao1 小时前
企业级AI Agent本地化部署实战:基于讯飞星辰与Astron的实战详解(附避坑清单)
人工智能·agent·科大讯飞·astron
ModelWhale2 小时前
实训赋能,平台支撑:和鲸科技助力南京大学人工智能基础课落地
人工智能·科技
胡萝卜3.02 小时前
C++现代模板编程核心技术精解:从类型分类、引用折叠、完美转发的内在原理,到可变模板参数的基本语法、包扩展机制及emplace接口的底层实现
开发语言·c++·人工智能·机器学习·完美转发·引用折叠·可变模板参数
Codebee2 小时前
OODER图生代码框架:Java注解驱动的全栈实现与落地挑战
人工智能