服从正态分布的正弦函数、余弦函数期望

服从正态分布的正弦函数期望

服从正态分布的正弦函数、余弦函数期望。

如果X服从均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2的正态分布,计算sin(X)cos(X)的数学期望。

利用特征函数(Characteristic Function)Wiki-Characteristic Function,我们知道 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) X∼N(μ,σ2)的特征函数为:
φ X ( t ) = E ( e i t X ) = e x p ( i μ t − σ 2 t 2 2 ) = e x p ( − σ 2 t 2 / 2 ) e x p ( i μ t ) \varphi_{X(t)}=E(e^{itX})=exp\left({i\mu t - \dfrac{\sigma^2t^2}{2}}\right)=exp(-\sigma^2t^2/2)exp(i\mu t) φX(t)=E(eitX)=exp(iμt−2σ2t2)=exp(−σ2t2/2)exp(iμt)

根据欧拉公式:
e i x = cos ⁡ ( x ) + i sin ⁡ ( x ) e^{ix} = \cos(x)+i\sin(x) eix=cos(x)+isin(x)

E ( e i t X ) = e x p ( i μ t − σ 2 t 2 2 ) = e x p ( − σ 2 t 2 / 2 ) e x p ( i μ t ) = e x p ( − σ 2 t 2 / 2 ) [ cos ⁡ ( μ t ) + i sin ⁡ ( μ t ) ] = e x p ( − σ 2 t 2 / 2 ) cos ⁡ ( μ t ) + e x p ( − σ 2 t 2 / 2 ) sin ⁡ ( μ t ) i = R e a l ( E ( e i t X ) ) + i I m ( E ( e i t X ) ) \begin{aligned} E(e^{itX})&=exp\left({i\mu t - \dfrac{\sigma^2t^2}{2}}\right) \\ &=exp(-\sigma^2t^2/2)exp(i\mu t) \\ &=exp(-\sigma^2t^2/2)\left[\cos(\mu t)+i\sin(\mu t)\right]\\ &=exp(-\sigma^2t^2/2)\cos(\mu t) +exp(-\sigma^2t^2/2)\sin(\mu t)i \\ &=Real(E(e^{itX}))+iIm(E(e^{itX})) \end{aligned} E(eitX)=exp(iμt−2σ2t2)=exp(−σ2t2/2)exp(iμt)=exp(−σ2t2/2)[cos(μt)+isin(μt)]=exp(−σ2t2/2)cos(μt)+exp(−σ2t2/2)sin(μt)i=Real(E(eitX))+iIm(E(eitX))

上述数学期望变为:
E ( e i t X ) = E ( cos ⁡ ( t X ) + i sin ⁡ ( t X ) ) = E ( c o s ( t X ) ) + i E ( s i n ( t X ) ) = R e a l ( E ( e i t X ) ) + i I m ( E ( e i t X ) ) \begin{aligned} E(e^{itX})&=E\left(\cos(tX)+i\sin(tX)\right)\\ &= E(cos(tX)) + iE(sin(tX))\\ &=Real(E(e^{itX}))+iIm(E(e^{itX})) \end{aligned} E(eitX)=E(cos(tX)+isin(tX))=E(cos(tX))+iE(sin(tX))=Real(E(eitX))+iIm(E(eitX))

对比上述的实数部分和虚数部分,得到:
E ( cos ⁡ ( t X ) ) = e x p ( − σ 2 t 2 / 2 ) cos ⁡ ( μ t ) E ( sin ⁡ ( t X ) ) = e x p ( − σ 2 t 2 / 2 ) s i n ( μ t ) E(\cos(tX))=exp(-\sigma^2t^2/2)\cos(\mu t)\\ E(\sin(tX))=exp(-\sigma^2t^2/2)sin(\mu t) E(cos(tX))=exp(−σ2t2/2)cos(μt)E(sin(tX))=exp(−σ2t2/2)sin(μt)

最后,当t=1的时候:
E ( cos ⁡ ( X ) ) = e x p ( − σ 2 / 2 ) cos ⁡ ( μ ) E ( sin ⁡ ( X ) ) = e x p ( − σ 2 / 2 ) s i n ( μ ) E(\cos(X))=exp(-\sigma^2/2)\cos(\mu)\\ E(\sin(X))=exp(-\sigma^2/2)sin(\mu) E(cos(X))=exp(−σ2/2)cos(μ)E(sin(X))=exp(−σ2/2)sin(μ)

参考资料:Mean and variance of Y=cos(bX) when X has a Gaussian distribution

应用:IPE位置编码中,对服从高斯分布正弦函数的数学期望计算:

python 复制代码
# Code Source: 
# https://github.com/liuyuan-pal/NeRO/blob/3b4d421a646097e7d59557c5ea24f4281ab38ef1/network/field.py#L369-L378
def expected_sin(mean, var):
  """Compute the mean of sin(x), x ~ N(mean, var)."""
  return torch.exp(-0.5 * var) * torch.sin(mean)  # large var -> small value.

def IPE(mean,var,min_deg,max_deg):
    scales = 2**torch.arange(min_deg, max_deg)
    shape = mean.shape[:-1] + (-1,)
    scaled_mean = torch.reshape(mean[..., None, :] * scales[:, None], shape)
    scaled_var = torch.reshape(var[..., None, :] * scales[:, None]**2, shape)
    return expected_sin(torch.concat([scaled_mean, scaled_mean + 0.5 * np.pi], dim=-1), torch.concat([scaled_var] * 2, dim=-1))
相关推荐
Mintopia几秒前
😎 HTTP/2 中的 HPACK 压缩原理全揭秘
前端·人工智能·aigc
阿里云大数据AI技术6 分钟前
EMR AI 助手再升级:支持 Serverless StarRocks
人工智能
bing.shao8 分钟前
golang 做AI任务链的优势和场景
开发语言·人工智能·golang
知乎的哥廷根数学学派8 分钟前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
deephub24 分钟前
Agentic Memory 实践:用 agents.md 实现 LLM 持续学习
人工智能·大语言模型·agent
chen_jared30 分钟前
反对称矩阵的性质和几何意义
人工智能·算法·机器学习
NocoBase38 分钟前
NocoBase 本周更新汇总:支持 Gemini-3 模型
人工智能·开源·零代码·无代码·版本更新
汇智信科43 分钟前
智慧矿山和工业大数据解决方案“安全生产数据综合分析系统
大数据·人工智能·安全·智能算法·智慧矿山·工业大数据·汇智信科
雨大王5121 小时前
汽车工厂智能调度系统:自适应调度算法如何解决资源与任务匹配难题?
大数据·人工智能·汽车·制造
雨大王5121 小时前
缩短交付周期:汽车企业如何通过计划智能体实现高效协同?
大数据·人工智能·汽车·制造