hive表字段跟字段对应的值转为json数组

第一种方式 直接用hive 函数实现

复制代码
select collect_list(named_struct('id',id,'name',name)) from table  

此方式不适用于字段数量过多的情况(比较麻烦)

第二种方式 写udf 函数

复制代码
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.hive.ql.metadata.Table;
import org.apache.hadoop.hive.ql.metadata.TableNotFoundException;
import org.json.JSONArray;
import org.json.JSONObject;

@Description(
    name = "table_to_json_array",
    value = "Converts data from a Hive table to a JSON array.",
    extended = "Example:\n" +
            "  SELECT table_to_json_array('your_table') AS json_array FROM your_table;"
)
public class TableToJsonArray extends UDF {

    public String evaluate(String tableName) {
        try {
            // 获取 Hive 表对象
            Table table = getTable(tableName);

            // 获取表的结构(字段名)
            String[] fieldNames = table.getAllCols().stream().map(column -> column.getName()).toArray(String[]::new);

            // 构建查询
            StringBuilder queryBuilder = new StringBuilder();
            queryBuilder.append("SELECT ");

            for (int i = 0; i < fieldNames.length; i++) {
                queryBuilder.append("named_struct('")
                            .append(fieldNames[i])
                            .append("', ")
                            .append(fieldNames[i])
                            .append(")");

                if (i < fieldNames.length - 1) {
                    queryBuilder.append(", ");
                }
            }

            queryBuilder.append(" FROM ")
                        .append(tableName);

            // 执行查询
            String query = queryBuilder.toString();
            JSONArray jsonArray = executeQuery(query);

            // 返回 JSON 数组
            return jsonArray.toString();
        } catch (TableNotFoundException e) {
            // 处理表不存在的情况
            return null;
        }
    }

    // 获取 Hive 表对象
    private Table getTable(String tableName) throws TableNotFoundException {
        // 使用 Hive 元数据获取表对象
        // 这里需要适应你的环境和需求来获取表对象
        // 示例代码省略了实际获取表对象的细节
        throw new TableNotFoundException("Table not found: " + tableName);
    }

    // 执行查询并返回结果
    private JSONArray executeQuery(String query) {
        // 在这里执行查询并返回结果的代码,可以使用 Hive 的 JDBC 驱动程序或其他适当的方式执行查询
        // 返回的结果应该是一个 JSON 数组
        // 示例代码省略了实际查询和结果处理的细节
        return new JSONArray(); // 返回空数组作为示例
    }
}

此方式不适用于获取表种某几个字段及字段对应的值的情况

相关推荐
youka1501 小时前
大数据学习栈记——Hive4.0.1安装
大数据·hive·学习
IT成长日记14 小时前
【Hive入门】Hive基础操作与SQL语法:DDL操作全面指南
hive·hadoop·sql·ddl操作
IT成长日记14 小时前
【Hive入门】Hive分桶表深度解析:从哈希分桶到Join优化的完整指南
hive·hadoop·哈希算法·哈希分桶·join优化
和算法死磕到底16 小时前
ubantu18.04(Hadoop3.1.3)之Spark安装和编程实践
大数据·hadoop·pycharm·spark
菜鸟、上路16 小时前
Hadoop 集群扩容新增节点操作文档
大数据·hadoop·分布式
IT成长日记18 小时前
【Hive入门】Hive动态分区与静态分区:使用场景与性能对比完全指南
数据仓库·hive·hadoop·动态分区·静态分区
嘟嘟嘟嘟嘟嘟嘟.19 小时前
spark和hadoop之间的对比和联系
hadoop·spark
viperrrrrrrrrr71 天前
大数据学习(112)-HIVE中的窗口函数
hive·sql·学习
酷爱码1 天前
如何通过python连接hive,并对里面的表进行增删改查操作
开发语言·hive·python
Debug_TheWorld1 天前
Hive学习
hive