hive表字段跟字段对应的值转为json数组

第一种方式 直接用hive 函数实现

select collect_list(named_struct('id',id,'name',name)) from table  

此方式不适用于字段数量过多的情况(比较麻烦)

第二种方式 写udf 函数

import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.hive.ql.metadata.Table;
import org.apache.hadoop.hive.ql.metadata.TableNotFoundException;
import org.json.JSONArray;
import org.json.JSONObject;

@Description(
    name = "table_to_json_array",
    value = "Converts data from a Hive table to a JSON array.",
    extended = "Example:\n" +
            "  SELECT table_to_json_array('your_table') AS json_array FROM your_table;"
)
public class TableToJsonArray extends UDF {

    public String evaluate(String tableName) {
        try {
            // 获取 Hive 表对象
            Table table = getTable(tableName);

            // 获取表的结构(字段名)
            String[] fieldNames = table.getAllCols().stream().map(column -> column.getName()).toArray(String[]::new);

            // 构建查询
            StringBuilder queryBuilder = new StringBuilder();
            queryBuilder.append("SELECT ");

            for (int i = 0; i < fieldNames.length; i++) {
                queryBuilder.append("named_struct('")
                            .append(fieldNames[i])
                            .append("', ")
                            .append(fieldNames[i])
                            .append(")");

                if (i < fieldNames.length - 1) {
                    queryBuilder.append(", ");
                }
            }

            queryBuilder.append(" FROM ")
                        .append(tableName);

            // 执行查询
            String query = queryBuilder.toString();
            JSONArray jsonArray = executeQuery(query);

            // 返回 JSON 数组
            return jsonArray.toString();
        } catch (TableNotFoundException e) {
            // 处理表不存在的情况
            return null;
        }
    }

    // 获取 Hive 表对象
    private Table getTable(String tableName) throws TableNotFoundException {
        // 使用 Hive 元数据获取表对象
        // 这里需要适应你的环境和需求来获取表对象
        // 示例代码省略了实际获取表对象的细节
        throw new TableNotFoundException("Table not found: " + tableName);
    }

    // 执行查询并返回结果
    private JSONArray executeQuery(String query) {
        // 在这里执行查询并返回结果的代码,可以使用 Hive 的 JDBC 驱动程序或其他适当的方式执行查询
        // 返回的结果应该是一个 JSON 数组
        // 示例代码省略了实际查询和结果处理的细节
        return new JSONArray(); // 返回空数组作为示例
    }
}

此方式不适用于获取表种某几个字段及字段对应的值的情况

相关推荐
青云交1 小时前
大数据新视界 -- Hive 数据仓库:构建高效数据存储的基石(下)(2/ 30)
大数据·数据仓库·hive·数据安全·数据分区·数据桶·大数据存储
一条晒干的咸魚1 小时前
【Web前端】创建我的第一个 Web 表单
服务器·前端·javascript·json·对象·表单
Lorin 洛林2 小时前
Hadoop 系列 MapReduce:Map、Shuffle、Reduce
大数据·hadoop·mapreduce
B站计算机毕业设计超人4 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
Yz98768 小时前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
lzhlizihang8 小时前
python如何使用spark操作hive
hive·python·spark
武子康8 小时前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康8 小时前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
JessieZeng aaa20 小时前
CSV文件数据导入hive
数据仓库·hive·hadoop
黎明晓月1 天前
PostgreSQL提取JSON格式的数据(包含提取list指定索引数据)
postgresql·json·list