01 TextRNN & FastText & TextCNN-04-训练要点,实验过程

TextRNN & FastText & TextCNN-03-模型总览,后

训练要点

RNN训练

得出来的y(m)(预测标签)是每一个分类的概率,比如是一个五分类,化成5个格子,每一个格子是概率,5个格子加起来是1

损失

有多任务怎么计算loss,通过一个线性的一个变换来将所有的这些loss累加到一起。

大M就是代表我们有多少任务,比如我们有4个数据集,M就等于4

λm是权重,4个任务的权重不一样

数据的选择

训练方法:

1.随机选择一项任务;

2.从该任务中随机选择一个训练样本;

3.根据基于梯度的优化

(paper 中使用 Adagradupdate rule)来更新参数;

4.重复 1-3 步。

微调

预训练

对于模型三来说,共享层可以用所有的任务数据(4个数据集)进行预训练。模型三就可以获得四个数据集的所有信息。

用无监督的方法去预训练一些信息。

实验设置和结果分析

实验结果和分析知识树

数据集

4个数据集

SST-1:5个情绪类别的电影影评,来自斯坦福情感数据库

SST-2:2分类电影影评,来自斯坦福数据库

SUBJ:主观性数据集,任务目的是将句子分为主观和客观

IMDB:2分类的电影影评,大多数评价为长句子

数据的对比

超参与训练

使用 word2vec在维基语料获得词向量字典规模约 500,000。词嵌入在训练过程中被微调以提高性能;其他参数在[-0.1,0.1]的范围随机采样,超参数将选择在验证集上性能最好的一组。对于没有验证集的数据集使用 10 折交叉验证。

特定任务和共享层的嵌入大小为 64。对于模型一,每个单词有两个嵌入,大小都为 64。
LSTM 的隐藏层大小为 50。初始学习率为0.1。参数的正则化权值为 10^-5.

相关推荐
星云数灵8 分钟前
大模型高级工程师考试练习题1
人工智能·大模型·大模型工程师·大模型考试题·大模型工程师练习题·大模型高频考题
草莓熊Lotso9 分钟前
Python 进阶核心:字典 / 文件操作 + 上下文管理器实战指南
数据结构·c++·人工智能·经验分享·笔记·git·python
乐迪信息2 小时前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别
学术小白人4 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经5 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20197 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba7 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学7 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子7 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望8 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数