01 TextRNN & FastText & TextCNN-04-训练要点,实验过程

TextRNN & FastText & TextCNN-03-模型总览,后

训练要点

RNN训练

得出来的y(m)(预测标签)是每一个分类的概率,比如是一个五分类,化成5个格子,每一个格子是概率,5个格子加起来是1

损失

有多任务怎么计算loss,通过一个线性的一个变换来将所有的这些loss累加到一起。

大M就是代表我们有多少任务,比如我们有4个数据集,M就等于4

λm是权重,4个任务的权重不一样

数据的选择

训练方法:

1.随机选择一项任务;

2.从该任务中随机选择一个训练样本;

3.根据基于梯度的优化

(paper 中使用 Adagradupdate rule)来更新参数;

4.重复 1-3 步。

微调

预训练

对于模型三来说,共享层可以用所有的任务数据(4个数据集)进行预训练。模型三就可以获得四个数据集的所有信息。

用无监督的方法去预训练一些信息。

实验设置和结果分析

实验结果和分析知识树

数据集

4个数据集

SST-1:5个情绪类别的电影影评,来自斯坦福情感数据库

SST-2:2分类电影影评,来自斯坦福数据库

SUBJ:主观性数据集,任务目的是将句子分为主观和客观

IMDB:2分类的电影影评,大多数评价为长句子

数据的对比

超参与训练

使用 word2vec在维基语料获得词向量字典规模约 500,000。词嵌入在训练过程中被微调以提高性能;其他参数在[-0.1,0.1]的范围随机采样,超参数将选择在验证集上性能最好的一组。对于没有验证集的数据集使用 10 折交叉验证。

特定任务和共享层的嵌入大小为 64。对于模型一,每个单词有两个嵌入,大小都为 64。
LSTM 的隐藏层大小为 50。初始学习率为0.1。参数的正则化权值为 10^-5.

相关推荐
aigcapi1 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪2 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭2 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力2 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.1182 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_2 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋2 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_2 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp3 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉
Codebee3 小时前
Ooder A2UI架构白皮书
人工智能·响应式编程