01 TextRNN & FastText & TextCNN-04-训练要点,实验过程

TextRNN & FastText & TextCNN-03-模型总览,后

训练要点

RNN训练

得出来的y(m)(预测标签)是每一个分类的概率,比如是一个五分类,化成5个格子,每一个格子是概率,5个格子加起来是1

损失

有多任务怎么计算loss,通过一个线性的一个变换来将所有的这些loss累加到一起。

大M就是代表我们有多少任务,比如我们有4个数据集,M就等于4

λm是权重,4个任务的权重不一样

数据的选择

训练方法:

1.随机选择一项任务;

2.从该任务中随机选择一个训练样本;

3.根据基于梯度的优化

(paper 中使用 Adagradupdate rule)来更新参数;

4.重复 1-3 步。

微调

预训练

对于模型三来说,共享层可以用所有的任务数据(4个数据集)进行预训练。模型三就可以获得四个数据集的所有信息。

用无监督的方法去预训练一些信息。

实验设置和结果分析

实验结果和分析知识树

数据集

4个数据集

SST-1:5个情绪类别的电影影评,来自斯坦福情感数据库

SST-2:2分类电影影评,来自斯坦福数据库

SUBJ:主观性数据集,任务目的是将句子分为主观和客观

IMDB:2分类的电影影评,大多数评价为长句子

数据的对比

超参与训练

使用 word2vec在维基语料获得词向量字典规模约 500,000。词嵌入在训练过程中被微调以提高性能;其他参数在[-0.1,0.1]的范围随机采样,超参数将选择在验证集上性能最好的一组。对于没有验证集的数据集使用 10 折交叉验证。

特定任务和共享层的嵌入大小为 64。对于模型一,每个单词有两个嵌入,大小都为 64。
LSTM 的隐藏层大小为 50。初始学习率为0.1。参数的正则化权值为 10^-5.

相关推荐
MARS_AI_18 分钟前
人工智能外呼系统:重构智能交互的全维度进化
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
赵青临的辉34 分钟前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论
小众AI1 小时前
Void: Cursor 的开源平替
人工智能·ai编程
静心问道1 小时前
Donut:无OCR文档理解Transformer
深度学习·ocr·transformer
资深の小白1 小时前
一个基于 Spring Boot 的实现,用于代理百度 AI 的 OCR 接口
人工智能·spring boot·百度
二川bro1 小时前
从AlphaGo到ChatGPT:AI技术如何一步步改变世界?
人工智能·chatgpt
码农新猿类1 小时前
帧差法识别
人工智能·opencv·计算机视觉
cdut_suye1 小时前
【Linux系统】从 C 语言文件操作到系统调用的核心原理
java·linux·数据结构·c++·人工智能·机器学习·云计算
梁下轻语的秋缘1 小时前
前馈神经网络回归(ANN Regression)从原理到实战
人工智能·神经网络·回归
xu_wenming2 小时前
华为Watch的ECG功能技术分析
人工智能·嵌入式硬件·算法