01 TextRNN & FastText & TextCNN-04-训练要点,实验过程

TextRNN & FastText & TextCNN-03-模型总览,后

训练要点

RNN训练

得出来的y(m)(预测标签)是每一个分类的概率,比如是一个五分类,化成5个格子,每一个格子是概率,5个格子加起来是1

损失

有多任务怎么计算loss,通过一个线性的一个变换来将所有的这些loss累加到一起。

大M就是代表我们有多少任务,比如我们有4个数据集,M就等于4

λm是权重,4个任务的权重不一样

数据的选择

训练方法:

1.随机选择一项任务;

2.从该任务中随机选择一个训练样本;

3.根据基于梯度的优化

(paper 中使用 Adagradupdate rule)来更新参数;

4.重复 1-3 步。

微调

预训练

对于模型三来说,共享层可以用所有的任务数据(4个数据集)进行预训练。模型三就可以获得四个数据集的所有信息。

用无监督的方法去预训练一些信息。

实验设置和结果分析

实验结果和分析知识树

数据集

4个数据集

SST-1:5个情绪类别的电影影评,来自斯坦福情感数据库

SST-2:2分类电影影评,来自斯坦福数据库

SUBJ:主观性数据集,任务目的是将句子分为主观和客观

IMDB:2分类的电影影评,大多数评价为长句子

数据的对比

超参与训练

使用 word2vec在维基语料获得词向量字典规模约 500,000。词嵌入在训练过程中被微调以提高性能;其他参数在[-0.1,0.1]的范围随机采样,超参数将选择在验证集上性能最好的一组。对于没有验证集的数据集使用 10 折交叉验证。

特定任务和共享层的嵌入大小为 64。对于模型一,每个单词有两个嵌入,大小都为 64。
LSTM 的隐藏层大小为 50。初始学习率为0.1。参数的正则化权值为 10^-5.

相关推荐
机器学习之心HML2 分钟前
机器学习之心程序和数据清单
人工智能
LiYingL2 分钟前
针对大规模语言模型的离群值安全预训练创新,可防止离群值并保护量化准确性
人工智能·机器学习·语言模型
ekprada6 分钟前
Day 37 - 早停策略与模型权重的保存
人工智能·机器学习
致Great20 分钟前
Nano Banana提示语精选
人工智能·gpt·chatgpt·开源·agent
文弱_书生39 分钟前
关于模型学习策略
人工智能·深度学习·神经网络
牛客企业服务1 小时前
2026年AI面试布局:破解规模化招聘的效率困局
人工智能·面试·职场和发展
gorgeous(๑>؂<๑)1 小时前
【北理工-AAAI26】MODA:首个无人机多光谱目标检测数据集
人工智能·目标检测·计算机视觉·目标跟踪·无人机
嵌入式的飞鱼1 小时前
SD NAND 焊接避坑指南:LGA-8 封装手工焊接技巧与常见错误
人工智能·stm32·单片机·嵌入式硬件·tf卡
serve the people1 小时前
tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
人工智能·tensorflow·neo4j
serve the people1 小时前
tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
人工智能·python·tensorflow