01 TextRNN & FastText & TextCNN-04-训练要点,实验过程

TextRNN & FastText & TextCNN-03-模型总览,后

训练要点

RNN训练

得出来的y(m)(预测标签)是每一个分类的概率,比如是一个五分类,化成5个格子,每一个格子是概率,5个格子加起来是1

损失

有多任务怎么计算loss,通过一个线性的一个变换来将所有的这些loss累加到一起。

大M就是代表我们有多少任务,比如我们有4个数据集,M就等于4

λm是权重,4个任务的权重不一样

数据的选择

训练方法:

1.随机选择一项任务;

2.从该任务中随机选择一个训练样本;

3.根据基于梯度的优化

(paper 中使用 Adagradupdate rule)来更新参数;

4.重复 1-3 步。

微调

预训练

对于模型三来说,共享层可以用所有的任务数据(4个数据集)进行预训练。模型三就可以获得四个数据集的所有信息。

用无监督的方法去预训练一些信息。

实验设置和结果分析

实验结果和分析知识树

数据集

4个数据集

SST-1:5个情绪类别的电影影评,来自斯坦福情感数据库

SST-2:2分类电影影评,来自斯坦福数据库

SUBJ:主观性数据集,任务目的是将句子分为主观和客观

IMDB:2分类的电影影评,大多数评价为长句子

数据的对比

超参与训练

使用 word2vec在维基语料获得词向量字典规模约 500,000。词嵌入在训练过程中被微调以提高性能;其他参数在[-0.1,0.1]的范围随机采样,超参数将选择在验证集上性能最好的一组。对于没有验证集的数据集使用 10 折交叉验证。

特定任务和共享层的嵌入大小为 64。对于模型一,每个单词有两个嵌入,大小都为 64。
LSTM 的隐藏层大小为 50。初始学习率为0.1。参数的正则化权值为 10^-5.

相关推荐
会周易的程序员1 分钟前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay2 分钟前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全9 分钟前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙19 分钟前
MinIO 对象存储系统架构图集
人工智能·llm·minio
汗流浃背了吧,老弟!22 分钟前
什么是ResNet
人工智能·深度学习
哥布林学者28 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (三)语言模型
深度学习·ai
小途软件30 分钟前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
人工智能培训1 小时前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心1 小时前
人工智能要学习的课程有哪些?
人工智能·学习
普通网友1 小时前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard