机器学习——特征工程和评价指标

0、前言:

  • 首先学习特征工程这部分知识之前,要对机器学习的算法用过使用。

1、特征工程:

  • 就机器学习的数据而言,特征就是数据的列名,有多少列,就有多少个维度的特征。就定义而言,特征是指数据中抽取出来对结果预测有用的信息。
  • 特征工程就是使用一些技巧来处理数据,使数据特征能在机器学习算法中发挥更好的作用
  • 本质而言,特征工程其实就是数据预处理

2、机器学习常见评价指标:

  • 1、AUC是二分类模型的一个评价指标,与AUC相关的就是ROC曲线,AUC的值是ROC曲线下的面积,AUC越接近1,说明模型越好,越接近0,说明模型越差,AUC的值在0.7以上就算比较好了。ROC曲线绘制原理如下:

  • 2、Precision(精确率/查准率)、Recall(召回率/查全率)、F-measure、Accuracy(准确率)


3、绘制ROC曲线:

  • 通过下面的示例,主要了解sklearn.metrics第三方库是用于评价机器学习模型的库,并且知道其中的auc和roc_curve两个评价指标的调用方式。
python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data, target = load_iris(return_X_y=True)
data.shape # (150, 4)
# AUC是二分类问题才能计算的
c = target<2
a = [0,1]
data2 = data[c].copy()
target2 = target[c].copy()
data2.shape,target2.shape
from sklearn.metrics import auc,roc_curve
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(data2,target2,test_size=0.2)
x_train.shape,y_train.shape
lr = LogisticRegression()
lr.fit(x_train,y_train)
y_pred = lr.predict(x_test)
y_pred
# ROC曲线
# 参数1:y_true(真实结果),y_score(预测结果)
fpr,tpr,_ = roc_curve(y_true=y_test,y_score=y_pred) # (array([0., 0., 1.]), array([0., 1., 1.]), array([inf,  1.,  0.]))

# ROC曲线横轴是FPR,纵轴是TPR
plt.plot(fpr,tpr,ls='--')
plt.title('ROC')
# AUC是ROC曲线下的面积,不好计算时,可以通过函数获取auc(fpr,tpr)
AUC = auc(fpr,tpr)
AUC

相关推荐
deep_drink2 分钟前
【论文精读(二十三)】PointMamba:点云界的“凌波微步”,线性复杂度终结 Transformer 霸权(NeurIPS 2024)
人工智能·深度学习·神经网络·transformer·point cloud
啊阿狸不会拉杆8 分钟前
《机器学习》完结篇-总结
人工智能·算法·机器学习·计算机视觉·ai·集成学习·ml
飞Link15 分钟前
PyTorch 核心 API 完全手册:从基础张量到模型部署
人工智能·pytorch·python·深度学习·机器学习
AI时代原住民16 分钟前
AI时代创业指南——指数型组织2.0
人工智能
快降重0219 分钟前
医学实验报告改写|实测:在数据精准的雷区中,安全剥离AI痕迹
人工智能·自然语言处理·论文降重·ai降重·降ai率·快降重
haing201923 分钟前
机器人带六维力传感器进行导纳控制恒力打磨原理介绍
人工智能·机器人
小王努力学编程25 分钟前
LangChain——AI应用开发框架
服务器·c++·人工智能·分布式·rpc·langchain·brpc
翱翔的苍鹰26 分钟前
完整的“RNN + jieba 中文情感分析”项目的Gradio Web 演示的简单项目
前端·人工智能·rnn
java1234_小锋28 分钟前
【AI大模型面试题】假设你需要为一个资源有限的场景(如单张消费级GPU)部署一个百亿参数的大模型,你会考虑哪些技术来使其可行且高效?
人工智能
yun685399232 分钟前
ai相关技术了解之n8n简单练习及理解
人工智能·n8n