高并发架构实战 Day 27

在项目初期,数据表的职能设计往往都会比较简单,但随着时间的推移和业务的发展变化,表经过多次修改后,其使用方向和职能都会发生较大的变化,导致我们的系统越来越复杂。 所以,当流量超过数据库的承受能力需要做缓存改造时,我们建议先根据当前的业务逻辑对数据表进行职能归类,它能够帮你快速识别出,表中哪些字段和功能不适合在特定类型的表内使用,这会让数据在缓存中有更好的性价比。 一般来说,数据可分为四类:实体表、实体辅助表、关系表和历史表,而判断是否适合缓存的核心思路主要是以下几点: 能够通过 ID 快速匹配的实体,以及通过关系快速查询的数据,适合放在长期缓存当中; 通过组合条件筛选统计的数据,也可以放到临时缓存,但是更新有延迟; 数据增长量大或者跟设计初衷不一样的表数据,这种不适合、也不建议去做做缓存。

相关推荐
计算机毕设VX:Fegn08953 小时前
计算机毕业设计|基于springboot + vue蛋糕店管理系统(源码+数据库+文档)
数据库·vue.js·spring boot·后端·课程设计
没差c4 小时前
springboot集成flyway
java·spring boot·后端
三水不滴4 小时前
Redis 过期删除与内存淘汰机制
数据库·经验分享·redis·笔记·后端·缓存
笨蛋不要掉眼泪5 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
sheji34168 小时前
【开题答辩全过程】以 基于SpringBoot的疗养院管理系统的设计与实现为例,包含答辩的问题和答案
java·spring boot·后端
短剑重铸之日8 小时前
《设计模式》第六篇:装饰器模式
java·后端·设计模式·装饰器模式
码界奇点9 小时前
基于Flask与OpenSSL的自签证书管理系统设计与实现
后端·python·flask·毕业设计·飞书·源代码管理
代码匠心10 小时前
从零开始学Flink:状态管理与容错机制
java·大数据·后端·flink·大数据处理
分享牛10 小时前
LangChain4j从入门到精通-11-结构化输出
后端·python·flask
知识即是力量ol11 小时前
在客户端直接上传文件到OSS
java·后端·客户端·阿里云oss·客户端直传