代码随想录Day46 | 139.单词拆分 | 4. 多重背包问题 I

139. 单词拆分

cpp 复制代码
class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordset(wordDict.begin(),wordDict.end());
            vector<bool> f(s.size()+1,false);
            f[0]=true;
            for(int i=1;i<=s.size();i++){
                for(int j=0;j<i;j++){
                    string word = s.substr(j,i-j);
                    if(wordset.count(word)&&f[j]) //当f[j]为true,且f[i-j]可以由字典得到,则f[i] = true
                    f[i]=true;
                }
            }
            return f[s.size()];
        }
};

4. 多重背包问题 I(acwing)

有 N 种物品和一个容量是 V的背包。

第 i种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。

输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100

0<vi,wi,si≤100

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int n,v;
int v1[N];
int w[N];
int s[N];
int f[N];

int main()
{
    cin >> n>>v;
    for (int i = 1; i <= n; i ++ ){
        cin>>v1[i];
        cin>>w[i];
        cin>>s[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=v;j>=v1[i];j--){
                for(int k=0;k<=s[i];k++){
                    if(j>=k*v1[i])
                    f[j]=max(f[j],f[j-k*v1[i]]+k*w[i]);
                }
            }
        }
    cout<<f[v];
}
相关推荐
LYFlied4 分钟前
【每日算法】LeetCode 64. 最小路径和(多维动态规划)
数据结构·算法·leetcode·动态规划
Salt_072832 分钟前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
货拉拉技术32 分钟前
AI拍货选车,开启拉货新体验
算法
MobotStone1 小时前
一夜蒸发1000亿美元后,Google用什么夺回AI王座
算法
Wang201220131 小时前
RNN和LSTM对比
人工智能·算法·架构
xueyongfu1 小时前
从Diffusion到VLA pi0(π0)
人工智能·算法·stable diffusion
永远睡不够的入1 小时前
快排(非递归)和归并的实现
数据结构·算法·深度优先
cheems95271 小时前
二叉树深搜算法练习(一)
数据结构·算法
sin_hielo1 小时前
leetcode 3074
数据结构·算法·leetcode
Yzzz-F1 小时前
算法竞赛进阶指南 动态规划 背包
算法·动态规划