格点数据可视化(美国站点的日降雨数据)

获取美国站点的日降雨量的格点数据,并且可视化

导入模块

python 复制代码
from datetime import datetime, timedelta
from urllib.request import urlopen

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
from metpy.units import masked_array, units
from netCDF4 import Dataset

读取数据

python 复制代码
nc = Dataset('20200309_conus.nc')
prcpvar = nc.variables['observation']
data = masked_array(prcpvar[:], units(prcpvar.units.lower())).to('mm')
x = nc.variables['x'][:]
y = nc.variables['y'][:]
proj_var = nc.variables[prcpvar.grid_mapping]

设置投影

python 复制代码
globe = ccrs.Globe(semimajor_axis=proj_var.earth_radius)
proj = ccrs.Stereographic(central_latitude=90.0,
                          central_longitude=proj_var.straight_vertical_longitude_from_pole,
                          true_scale_latitude=proj_var.standard_parallel, globe=globe)
python 复制代码
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1, projection=proj)

# 绘制海岸线、国界线、州界线
ax.coastlines()
ax.add_feature(cfeature.BORDERS)
ax.add_feature(cfeature.STATES)

# 设置降雨量等级间隔
clevs = [0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40,
         50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 750]
# In future MetPy
# norm, cmap = ctables.registry.get_with_boundaries('precipitation', clevs)
# 单独设置cmap
cmap_data = [(1.0, 1.0, 1.0),
             (0.3137255012989044, 0.8156862854957581, 0.8156862854957581),
             (0.0, 1.0, 1.0),
             (0.0, 0.8784313797950745, 0.501960813999176),
             (0.0, 0.7529411911964417, 0.0),
             (0.501960813999176, 0.8784313797950745, 0.0),
             (1.0, 1.0, 0.0),
             (1.0, 0.6274510025978088, 0.0),
             (1.0, 0.0, 0.0),
             (1.0, 0.125490203499794, 0.501960813999176),
             (0.9411764740943909, 0.250980406999588, 1.0),
             (0.501960813999176, 0.125490203499794, 1.0),
             (0.250980406999588, 0.250980406999588, 1.0),
             (0.125490203499794, 0.125490203499794, 0.501960813999176),
             (0.125490203499794, 0.125490203499794, 0.125490203499794),
             (0.501960813999176, 0.501960813999176, 0.501960813999176),
             (0.8784313797950745, 0.8784313797950745, 0.8784313797950745),
             (0.9333333373069763, 0.8313725590705872, 0.7372549176216125),
             (0.8549019694328308, 0.6509804129600525, 0.47058823704719543),
             (0.6274510025978088, 0.42352941632270813, 0.23529411852359772),
             (0.4000000059604645, 0.20000000298023224, 0.0)]
            
cmap = mcolors.ListedColormap(cmap_data, 'precipitation')
norm = mcolors.BoundaryNorm(clevs, cmap.N)

cs = ax.contourf(x, y, data, clevs, cmap=cmap, norm=norm)

# 添加colorbar
cbar = plt.colorbar(cs, orientation='horizontal')
cbar.set_label(data.units)
# 设置标题
ax.set_title(prcpvar.long_name + ' for period ending ' + nc.creation_time)
plt.show()

数据怎样获取

python 复制代码
dt = datetime.utcnow() - timedelta(days=1)  # 获取过去1天的时间
url = ('http://water.weather.gov/precip/downloads/{dt:%Y/%m/%d}/nws_precip_1day_'
       '{dt:%Y%m%d}_conus.nc'.format(dt=dt))
data = urlopen(url).read()
nc = Dataset('data', memory=data)

显示数据

python 复制代码
import xarray as xr
from xarray.backends import NetCDF4DataStore
data = xr.open_dataset(NetCDF4DataStore(nc))
data

保存为nc数据

python 复制代码
data.to_netcdf('{dt:%Y%m%d}_conus.nc'.format(dt=dt),'w')
相关推荐
湫ccc5 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe6 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin6 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
哭泣的眼泪4086 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
湫ccc7 小时前
《Python基础》之基本数据类型
开发语言·python
山海青风7 小时前
使用 OpenAI 进行数据探索性分析(EDA)
信息可视化·数据挖掘·数据分析
drebander8 小时前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
威威猫的栗子8 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
如若1238 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
墨染风华不染尘9 小时前
python之开发笔记
开发语言·笔记·python