芒果叶病害数据集(用于图像分类,每类500张照片)

1.数据集介绍

  • 数据类型:240x320 像素的芒果叶图像。
  • 数据格式:JPG。
  • 图像数量:共有4000张图像。其中约有1800张是不同的叶子图像,其余的是通过缩放和旋转进行制备的。
  • 考虑的病害:包括七种病害,分别是炭疽病、细菌性溃疡、切割象鼻虫、死枝、瘿小蜂、白粉病和黑霉。
  • 类别数量:共有八个类别,包括健康状态。
  • 实例分布:每个类别包含500张图像。
  • 数据获取方式:通过手机摄像头从芒果树上拍摄而来。
  • 数据来源地点:来自孟加拉国的四个芒果果园,分别是谢赫·班格拉农业大学果园、贾汉吉尔纳加尔大学果园、乌代普尔村芒果果园和伊塔克霍拉村芒果果园。

适用性:适用于区分健康和患病的叶子(二分类预测),以及区分不同疾病之间的差异(多类分类预测)。

2.整体文件夹

第一个文件夹(500张照片)

随意选取一张照片

第二个文件夹(500张照片)

随意选取一张照片

第三个文件夹(500张照片)

随意选取一张照片

第四个文件夹(500张照片)

随意选取一张照片

第五个文件夹(500张照片)

随意选取一张照片

第六个文件夹(500张照片)

随意选取一张照片

第七个文件夹(500张照片)

随意选取一张照片

第八个文件夹(500张照片)

随意选取一张照片

对数据集感兴趣的,可以关注最后一行

复制代码
import numpy as np 
import pandas as pd
#from sklearn.model_selection import train_test_split
from collections import Counter
import pywt
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
#数据集:https://mbd.pub/o/bread/ZJ6bmptu
相关推荐
JT85839617 分钟前
AI GEO 优化能否快速提升网站在搜索引擎的排名?
人工智能·搜索引擎
幂律智能19 分钟前
吾律——让普惠法律服务走进生活
人工智能·经验分享
IT_陈寒23 分钟前
Java性能优化:从这8个关键指标开始,让你的应用提速50%
前端·人工智能·后端
yzx99101327 分钟前
构建未来:深度学习、嵌入式与安卓开发的融合创新之路
android·人工智能·深度学习
非门由也38 分钟前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
机器学习之心2 小时前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER2 小时前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao2 小时前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu3 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii3 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉