芒果叶病害数据集(用于图像分类,每类500张照片)

1.数据集介绍

  • 数据类型:240x320 像素的芒果叶图像。
  • 数据格式:JPG。
  • 图像数量:共有4000张图像。其中约有1800张是不同的叶子图像,其余的是通过缩放和旋转进行制备的。
  • 考虑的病害:包括七种病害,分别是炭疽病、细菌性溃疡、切割象鼻虫、死枝、瘿小蜂、白粉病和黑霉。
  • 类别数量:共有八个类别,包括健康状态。
  • 实例分布:每个类别包含500张图像。
  • 数据获取方式:通过手机摄像头从芒果树上拍摄而来。
  • 数据来源地点:来自孟加拉国的四个芒果果园,分别是谢赫·班格拉农业大学果园、贾汉吉尔纳加尔大学果园、乌代普尔村芒果果园和伊塔克霍拉村芒果果园。

适用性:适用于区分健康和患病的叶子(二分类预测),以及区分不同疾病之间的差异(多类分类预测)。

2.整体文件夹

第一个文件夹(500张照片)

随意选取一张照片

第二个文件夹(500张照片)

随意选取一张照片

第三个文件夹(500张照片)

随意选取一张照片

第四个文件夹(500张照片)

随意选取一张照片

第五个文件夹(500张照片)

随意选取一张照片

第六个文件夹(500张照片)

随意选取一张照片

第七个文件夹(500张照片)

随意选取一张照片

第八个文件夹(500张照片)

随意选取一张照片

对数据集感兴趣的,可以关注最后一行

复制代码
import numpy as np 
import pandas as pd
#from sklearn.model_selection import train_test_split
from collections import Counter
import pywt
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
#数据集:https://mbd.pub/o/bread/ZJ6bmptu
相关推荐
在钱塘江12 分钟前
LangGraph构建Ai智能体-11-高级RAG之Self-RAG
人工智能·python
爱吃猪排28 分钟前
基于 Paddle Inference 3.0 的高性能 OCR 服务实现
人工智能·命令行
小阿鑫41 分钟前
MCP神器!MCP-USE 一键部署连接任何MCP服务器
服务器·人工智能·aigc·部署·ai落地·mcp·mcpserver·部署mcpserver·部署mcp
xw33734095641 小时前
《卷积神经网络(CNN):解锁视觉与多模态任务的深度学习核心》
人工智能·pytorch·深度学习·神经网络·cnn
极客BIM工作室1 小时前
机器学习阶段性总结:对深度学习本质的回顾 20250813
人工智能·深度学习·机器学习
程序员海军1 小时前
MCP神器!MCP-USE 一键部署连接任何MCP服务器
人工智能·aigc·mcp
Python测试之道1 小时前
利用生成式AI与大语言模型(LLM)革新自动化软件测试 —— 测试工程师必读深度解析
人工智能·语言模型·自动化
Christo31 小时前
ECCV-2018《Variational Wasserstein Clustering》
人工智能·机器学习·支持向量机
victory04311 小时前
音频重采样使用RandomOverSampler 还是 SMOTE
人工智能·深度学习·机器学习
飞翔的佩奇1 小时前
【完整源码+数据集+部署教程】武器目标检测系统源码和数据集:改进yolo11-AggregatedAtt
人工智能·python·yolo·目标检测·计算机视觉·数据集·yolo11