目录
[9.1 线程池](#9.1 线程池)
[9.1.1 最简易可行的线程池](#9.1.1 最简易可行的线程池)
[9.1.2 等待提交给线程池的任务完成运行](#9.1.2 等待提交给线程池的任务完成运行)
[9.1.4 避免任务队列上的争夺](#9.1.4 避免任务队列上的争夺)
[9.1.5 任务窃取](#9.1.5 任务窃取)
[9.2 中断线程](#9.2 中断线程)
[9.2.1 发起一个线程,以及把他中断](#9.2.1 发起一个线程,以及把他中断)
[9.2.2 检测线程是否被中断](#9.2.2 检测线程是否被中断)
[9.2.3 中断条件变量上的等待](#9.2.3 中断条件变量上的等待)
[9.2.4 中断条件变量std::condition_variable_any上的等待](#9.2.4 中断条件变量std::condition_variable_any上的等待)
[9.2.5 中断其他阻塞型等待](#9.2.5 中断其他阻塞型等待)
[9.2.6 处理中断](#9.2.6 处理中断)
[9.2.7 在应用程序推出时中断后台任务](#9.2.7 在应用程序推出时中断后台任务)
[9.3 小结](#9.3 小结)
9.1 线程池
大多数系统中,将每个任务指定给某个线程是不切实际的,不过可以利用并发性,进行并发执行。线程池提供了这样的功能,将提交到线程池中的任务并发执行,提交的任务将会挂在任务队列上。工作线程会从队列中的获取任务,当任务执行完成后,再从任务队列中获取下一个任务。
创建一个线程池时,会遇到几个关键性的设计问题,比如:可使用的线程数量,高效的任务分配方式,以及是否需要等待一个任务完成。
9.1.1 最简易可行的线程池
代码9.1 简单的线程池
cpp
class thread_pool
{
std::atomic_bool done;
thread_safe_queue<std::function<void()> > work_queue; // 1
std::vector<std::thread> threads; // 2
join_threads joiner; // 3
void worker_thread()
{
while(!done) // 4
{
std::function<void()> task;
if(work_queue.try_pop(task)) // 5
{
task(); // 6
}
else
{
std::this_thread::yield(); // 7
}
}
}
public:
thread_pool():
done(false),joiner(threads)
{
unsigned const thread_count=std::thread::hardware_concurrency(); // 8
try
{
for(unsigned i=0;i<thread_count;++i)
{
threads.push_back(
std::thread(&thread_pool::worker_thread,this)); // 9
}
}
catch(...)
{
done=true; // 10
throw;
}
}
~thread_pool()
{
done=true; // 11
}
template<typename FunctionType>
void submit(FunctionType f)
{
work_queue.push(std::function<void()>(f)); // 12
}
};
这样简单的线程池就完成了,特别是任务没有返回值,或需要执行阻塞操作的任务。很多情况下,这样的线程池是不够用的,其他情况使用这样简单的线程池可能会出现问题,比如:死锁。同样,在简单例子中使用std::async
能提供更好的功能。
9.1.2 等待提交给线程池的任务完成运行
第8章中的例子中,线程间的任务划分完成后,代码会显式生成新线程,主线程通常是等待新线程在返回调用之后结束,确保所有任务都完成。使用线程池就需要等待任务提交到线程池中,而非直接提交给单个线程。与基于std::async
的方法类似,使用代码9.1中的简单线程池,使用第4章中提到的工具:条件变量和future。虽然会增加代码的复杂度,不过要比直接对任务进行等待好很多。
通过增加线程池的复杂度,可以直接等待任务完成。使用submit()函数返回对任务描述的句柄,可用来等待任务的完成。任务句柄会用条件变量或future进行包装,从而简化线程池的实现。
一种特殊的情况是,执行任务的线程需要返回结果到主线程上进行处理。本这种情况下,需要用future对最终的结果进行转移。代码9.2展示了对简单线程池的修改,通过修改就能等待任务完成,以及在工作线程完成后,返回一个结果到等待线程中去,不过std::packaged_task<>
实例是不可拷贝的,仅可移动,所以不能再使用std::function<>
来实现任务队列,因为std::function<>
需要存储可复制构造的函数对象。包装一个自定义函数,用来处理可移动的类型,就是一个带有函数操作符的类型擦除类。只需要处理没有入参的函数和无返回的函数即可,所以这只是一个简单的虚函数调用。
代码9.2 可等待任务的线程池
cpp
class function_wrapper
{
struct impl_base {
virtual void call()=0;
virtual ~impl_base() {}
};
std::unique_ptr<impl_base> impl;
template<typename F>
struct impl_type: impl_base
{
F f;
impl_type(F&& f_): f(std::move(f_)) {}
void call() { f(); }
};
public:
template<typename F>
function_wrapper(F&& f):
impl(new impl_type<F>(std::move(f)))
{}
void operator()() { impl->call(); }
function_wrapper() = default;
function_wrapper(function_wrapper&& other):
impl(std::move(other.impl))
{}
function_wrapper& operator=(function_wrapper&& other)
{
impl=std::move(other.impl);
return *this;
}
function_wrapper(const function_wrapper&)=delete;
function_wrapper(function_wrapper&)=delete;
function_wrapper& operator=(const function_wrapper&)=delete;
};
class thread_pool
{
thread_safe_queue<function_wrapper> work_queue; // 使用function_wrapper,而非使用std::function
void worker_thread()
{
while(!done)
{
function_wrapper task;
if(work_queue.try_pop(task))
{
task();
}
else
{
std::this_thread::yield();
}
}
}
public:
template<typename FunctionType>
std::future<typename std::result_of<FunctionType()>::type> // 1
submit(FunctionType f)
{
typedef typename std::result_of<FunctionType()>::type
result_type; // 2
std::packaged_task<result_type()> task(std::move(f)); // 3
std::future<result_type> res(task.get_future()); // 4
work_queue.push(std::move(task)); // 5
return res; // 6
}
// 和之前一样
};
9.1.3等待其他任务完成的任务
最简单的方法就是在thread_pool中添加一个新函数,来执行任务队列上的任务,并对线程池进行管理。高级线程池的实现可能会在等待函数中添加逻辑,或等待其他函数来处理这个任务,优先的任务会让其他的任务进行等待。下面代码中的实现,就展示了一个新run_pending_task()函数,对于快速排序的修改将会在代码9.5中展示。
代码9.4 run_pending_task()函数实现
cpp
void thread_pool::run_pending_task()
{
function_wrapper task;
if(work_queue.try_pop(task))
{
task();
}
else
{
std::this_thread::yield();
}
}
下面快速排序算法的实现要比代码8.1中版本简单许多,因为所有线程管理逻辑都移到线程池中了。
代码9.5 基于线程池的快速排序实现
cpp
template<typename T>
struct sorter // 1
{
thread_pool pool; // 2
std::list<T> do_sort(std::list<T>& chunk_data)
{
if(chunk_data.empty())
{
return chunk_data;
}
std::list<T> result;
result.splice(result.begin(),chunk_data,chunk_data.begin());
T const& partition_val=*result.begin();
typename std::list<T>::iterator divide_point=
std::partition(chunk_data.begin(),chunk_data.end(),
[&](T const& val){return val<partition_val;});
std::list<T> new_lower_chunk;
new_lower_chunk.splice(new_lower_chunk.end(),
chunk_data,chunk_data.begin(),
divide_point);
std::future<std::list<T> > new_lower= // 3
pool.submit(std::bind(&sorter::do_sort,this,
std::move(new_lower_chunk)));
std::list<T> new_higher(do_sort(chunk_data));
result.splice(result.end(),new_higher);
while(!new_lower.wait_for(std::chrono::seconds(0)) ==
std::future_status::timeout)
{
pool.run_pending_task(); // 4
}
result.splice(result.begin(),new_lower.get());
return result;
}
};
template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
if(input.empty())
{
return input;
}
sorter<T> s;
return s.do_sort(input);
}
9.1.4 避免任务队列上的争夺
为了避免乒乓缓存,每个线程建立独立的任务队列。这样,每个线程就会将新任务放在自己的任务队列上,并且当线程上的任务队列没有任务时,去全局的任务列表中取任务。下面列表中的实现,使用了一个thread_local变量,来保证每个线程都拥有自己的任务列表(如全局列表那样)。
代码9.6 线程池------线程具有本地任务队列
cpp
class thread_pool
{
thread_safe_queue<function_wrapper> pool_work_queue;
typedef std::queue<function_wrapper> local_queue_type; // 1
static thread_local std::unique_ptr<local_queue_type>
local_work_queue; // 2
void worker_thread()
{
local_work_queue.reset(new local_queue_type); // 3
while(!done)
{
run_pending_task();
}
}
public:
template<typename FunctionType>
std::future<typename std::result_of<FunctionType()>::type>
submit(FunctionType f)
{
typedef typename std::result_of<FunctionType()>::type result_type;
std::packaged_task<result_type()> task(f);
std::future<result_type> res(task.get_future());
if(local_work_queue) // 4
{
local_work_queue->push(std::move(task));
}
else
{
pool_work_queue.push(std::move(task)); // 5
}
return res;
}
void run_pending_task()
{
function_wrapper task;
if(local_work_queue && !local_work_queue->empty()) // 6
{
task=std::move(local_work_queue->front());
local_work_queue->pop();
task();
}
else if(pool_work_queue.try_pop(task)) // 7
{
task();
}
else
{
std::this_thread::yield();
}
}
// rest as before
};
9.1.5 任务窃取
任务分配不均时,造成的结果就是:某个线程本地队列中有很多任务的同时,其他线程无所事事。例如:举一个快速排序的例子,一开始的数据块能在线程池上被处理,因为剩余部分会放在工作线程的本地队列上进行处理,这样的使用方式也违背使用线程池的初衷。
幸好这个问题有解:本地工作队列和全局工作队列上没有任务时,可从别的线程队列中窃取任务。
代码9.7 基于锁的任务窃取队列
cpp
class work_stealing_queue
{
private:
typedef function_wrapper data_type;
std::deque<data_type> the_queue; // 1
mutable std::mutex the_mutex;
public:
work_stealing_queue()
{}
work_stealing_queue(const work_stealing_queue& other)=delete;
work_stealing_queue& operator=(
const work_stealing_queue& other)=delete;
void push(data_type data) // 2
{
std::lock_guard<std::mutex> lock(the_mutex);
the_queue.push_front(std::move(data));
}
bool empty() const
{
std::lock_guard<std::mutex> lock(the_mutex);
return the_queue.empty();
}
bool try_pop(data_type& res) // 3
{
std::lock_guard<std::mutex> lock(the_mutex);
if(the_queue.empty())
{
return false;
}
res=std::move(the_queue.front());
the_queue.pop_front();
return true;
}
bool try_steal(data_type& res) // 4
{
std::lock_guard<std::mutex> lock(the_mutex);
if(the_queue.empty())
{
return false;
}
res=std::move(the_queue.back());
the_queue.pop_back();
return true;
}
};
这就说明每个线程中的"队列"是一个后进先出的栈,最新推入的任务将会第一个执行。从缓存角度来看,这将对性能有所提升,因为任务相关的数据一直存于缓存中,要比提前将任务相关数据推送到栈上好。同样,这种方式很好的映射到某个算法上,例如:快速排序。之前的实现中,每次调用do_sort()都会推送一个任务到栈上,并且等待这个任务执行完毕。通过对最新推入任务的处理,就可以保证在将当前所需数据块处理完成前,其他任务是否需要这些数据块,从而可以减少活动任务的数量和栈的使用次数。try_steal()从队列末尾获取任务,为了减少与try_pop()之间的竞争。使用在第6、7章中的所讨论的技术来让try_pop()和try_steal()并发执行。
现在拥有了一个很不错的任务队列,并且支持窃取。那如何在线程池中使用这个队列呢?这里简单的展示一下。
代码9.8 使用任务窃取的线程池
cpp
class thread_pool
{
typedef function_wrapper task_type;
std::atomic_bool done;
thread_safe_queue<task_type> pool_work_queue;
std::vector<std::unique_ptr<work_stealing_queue> > queues; // 1
std::vector<std::thread> threads;
join_threads joiner;
static thread_local work_stealing_queue* local_work_queue; // 2
static thread_local unsigned my_index;
void worker_thread(unsigned my_index_)
{
my_index=my_index_;
local_work_queue=queues[my_index].get(); // 3
while(!done)
{
run_pending_task();
}
}
bool pop_task_from_local_queue(task_type& task)
{
return local_work_queue && local_work_queue->try_pop(task);
}
bool pop_task_from_pool_queue(task_type& task)
{
return pool_work_queue.try_pop(task);
}
bool pop_task_from_other_thread_queue(task_type& task) // 4
{
for(unsigned i=0;i<queues.size();++i)
{
unsigned const index=(my_index+i+1)%queues.size(); // 5
if(queues[index]->try_steal(task))
{
return true;
}
}
return false;
}
public:
thread_pool():
done(false),joiner(threads)
{
unsigned const thread_count=std::thread::hardware_concurrency();
try
{
for(unsigned i=0;i<thread_count;++i)
{
queues.push_back(std::unique_ptr<work_stealing_queue>( // 6
new work_stealing_queue));
threads.push_back(
std::thread(&thread_pool::worker_thread,this,i));
}
}
catch(...)
{
done=true;
throw;
}
}
~thread_pool()
{
done=true;
}
template<typename FunctionType>
std::future<typename std::result_of<FunctionType()>::type> submit(
FunctionType f)
{
typedef typename std::result_of<FunctionType()>::type result_type;
std::packaged_task<result_type()> task(f);
std::future<result_type> res(task.get_future());
if(local_work_queue)
{
local_work_queue->push(std::move(task));
}
else
{
pool_work_queue.push(std::move(task));
}
return res;
}
void run_pending_task()
{
task_type task;
if(pop_task_from_local_queue(task) || // 7
pop_task_from_pool_queue(task) || // 8
pop_task_from_other_thread_queue(task)) // 9
{
task();
}
else
{
std::this_thread::yield();
}
}
};
9.2 中断线程
9.2.1 发起一个线程,以及把他中断
代码9.9 interruptible_thread的基本实现
cpp
class interrupt_flag
{
public:
void set();
bool is_set() const;
};
thread_local interrupt_flag this_thread_interrupt_flag; // 1
class interruptible_thread
{
std::thread internal_thread;
interrupt_flag* flag;
public:
template<typename FunctionType>
interruptible_thread(FunctionType f)
{
std::promise<interrupt_flag*> p; // 2
internal_thread=std::thread([f,&p]{ // 3
p.set_value(&this_thread_interrupt_flag);
f(); // 4
});
flag=p.get_future().get(); // 5
}
void interrupt()
{
if(flag)
{
flag->set(); // 6
}
}
};
9.2.2 检测线程是否被中断
9.2.3 中断条件变量上的等待
代码9.11 为std::condition_variable
在interruptible_wait中使用超时
cpp
class interrupt_flag
{
std::atomic<bool> flag;
std::condition_variable* thread_cond;
std::mutex set_clear_mutex;
public:
interrupt_flag():
thread_cond(0)
{}
void set()
{
flag.store(true,std::memory_order_relaxed);
std::lock_guard<std::mutex> lk(set_clear_mutex);
if(thread_cond)
{
thread_cond->notify_all();
}
}
bool is_set() const
{
return flag.load(std::memory_order_relaxed);
}
void set_condition_variable(std::condition_variable& cv)
{
std::lock_guard<std::mutex> lk(set_clear_mutex);
thread_cond=&cv;
}
void clear_condition_variable()
{
std::lock_guard<std::mutex> lk(set_clear_mutex);
thread_cond=0;
}
struct clear_cv_on_destruct
{
~clear_cv_on_destruct()
{
this_thread_interrupt_flag.clear_condition_variable();
}
};
};
void interruptible_wait(std::condition_variable& cv,
std::unique_lock<std::mutex>& lk)
{
interruption_point();
this_thread_interrupt_flag.set_condition_variable(cv);
interrupt_flag::clear_cv_on_destruct guard;
interruption_point();
cv.wait_for(lk,std::chrono::milliseconds(1));
interruption_point();
}
9.2.4 中断条件变量std::condition_variable_any上的等待
代码9.12 为std::condition_variable_any
设计的interruptible_wait
cpp
class interrupt_flag
{
std::atomic<bool> flag;
std::condition_variable* thread_cond;
std::condition_variable_any* thread_cond_any;
std::mutex set_clear_mutex;
public:
interrupt_flag():
thread_cond(0),thread_cond_any(0)
{}
void set()
{
flag.store(true,std::memory_order_relaxed);
std::lock_guard<std::mutex> lk(set_clear_mutex);
if(thread_cond)
{
thread_cond->notify_all();
}
else if(thread_cond_any)
{
thread_cond_any->notify_all();
}
}
template<typename Lockable>
void wait(std::condition_variable_any& cv,Lockable& lk)
{
struct custom_lock
{
interrupt_flag* self;
Lockable& lk;
custom_lock(interrupt_flag* self_,
std::condition_variable_any& cond,
Lockable& lk_):
self(self_),lk(lk_)
{
self->set_clear_mutex.lock(); // 1
self->thread_cond_any=&cond; // 2
}
void unlock() // 3
{
lk.unlock();
self->set_clear_mutex.unlock();
}
void lock()
{
std::lock(self->set_clear_mutex,lk); // 4
}
~custom_lock()
{
self->thread_cond_any=0; // 5
self->set_clear_mutex.unlock();
}
};
custom_lock cl(this,cv,lk);
interruption_point();
cv.wait(cl);
interruption_point();
}
// rest as before
};
template<typename Lockable>
void interruptible_wait(std::condition_variable_any& cv,
Lockable& lk)
{
this_thread_interrupt_flag.wait(cv,lk);
}
9.2.5 中断其他阻塞型等待
9.2.6 处理中断
9.2.7 在应用程序推出时中断后台任务
试想在桌面上查找一个应用。这就需要与用户互动,应用的状态需要能在显示器上显示,就能看出应用有什么改变。为了避免影响GUI的响应时间,通常会将处理线程放在后台运行。后台进程需要一直执行,直到应用退出。后台线程会作为应用启动的一部分被启动,并且在应用终止的时候停止运行。通常这样的应用只有在机器关闭时才会退出,因为应用需要更新应用最新的状态,就需要全时间运行。在某些情况下,当应用关闭,需要使用有序的方式将后台线程关闭,其中一种方式就是中断。
下面代码中为一个系统实现了简单的线程管理部分。
代码9.13 后台监视文件系统
cpp
std::mutex config_mutex;
std::vector<interruptible_thread> background_threads;
void background_thread(int disk_id)
{
while(true)
{
interruption_point(); // 1
fs_change fsc=get_fs_changes(disk_id); // 2
if(fsc.has_changes())
{
update_index(fsc); // 3
}
}
}
void start_background_processing()
{
background_threads.push_back(
interruptible_thread(background_thread,disk_1));
background_threads.push_back(
interruptible_thread(background_thread,disk_2));
}
int main()
{
start_background_processing(); // 4
process_gui_until_exit(); // 5
std::unique_lock<std::mutex> lk(config_mutex);
for(unsigned i=0;i<background_threads.size();++i)
{
background_threads[i].interrupt(); // 6
}
for(unsigned i=0;i<background_threads.size();++i)
{
background_threads[i].join(); // 7
}
}
9.3 小结
本章中了解各种线程管理的高级技术:线程池和中断线程。也了解了如何使用本地任务队列,使用任务窃取的方式减小同步开销,提高线程池的吞吐量,等待子任务完成的同时执行队列中其他任务,从而来避免死锁。
还有,使用线程去中断另一个处理线程的各种方式,比如:使用特定的断点和函数执行中断,要不就是使用某种方法对阻塞等待进行中断。