探索ClickHouse——使用Projection加速查询

在测试Projection之前,我们需要先创建一张表,并导入大量数据。

我们可以直接使用指令,从URL指向的文件中获取内容并导入表。但是担心网络不稳定,我们先将文件下载下来。

下载文件

bash 复制代码
wget wget http://prod.publicdata.landregistry.gov.uk.s3-website-eu-west-1.amazonaws.com/pp-complete.csv .

检查文件

bash 复制代码
wc -l pp-complete.csv 

28497127 pp-complete.csv

bash 复制代码
ll pp-complete.csv

-rw-rw-r-- 1 fangliang fangliang 4982107267 Aug 29 05:13 pp-complete.csv

即这个文件约有2850万行,占4个多G磁盘。

移动文件

bash 复制代码
su root
cp pp-complete.csv /var/lib/clickhouse/user_files/
exit

创建表

查看文件

使用下面指令查看文件内容

bash 复制代码
head -10 pp-complete.csv 
yaml 复制代码
"{F887F88E-7D15-4415-804E-52EAC2F10958}","70000","1995-07-07 00:00","MK15 9HP","D","N","F","31","","ALDRICH DRIVE","WILLEN","MILTON KEYNES","MILTON KEYNES","MILTON KEYNES","A","A"
"{40FD4DF2-5362-407C-92BC-566E2CCE89E9}","44500","1995-02-03 00:00","SR6 0AQ","T","N","F","50","","HOWICK PARK","SUNDERLAND","SUNDERLAND","SUNDERLAND","TYNE AND WEAR","A","A"
"{7A99F89E-7D81-4E45-ABD5-566E49A045EA}","56500","1995-01-13 00:00","CO6 1SQ","T","N","F","19","","BRICK KILN CLOSE","COGGESHALL","COLCHESTER","BRAINTREE","ESSEX","A","A"
"{28225260-E61C-4E57-8B56-566E5285B1C1}","58000","1995-07-28 00:00","B90 4TG","T","N","F","37","","RAINSBROOK DRIVE","SHIRLEY","SOLIHULL","SOLIHULL","WEST MIDLANDS","A","A"
"{444D34D7-9BA6-43A7-B695-4F48980E0176}","51000","1995-06-28 00:00","DY5 1SA","S","N","F","59","","MERRY HILL","BRIERLEY HILL","BRIERLEY HILL","DUDLEY","WEST MIDLANDS","A","A"
"{AE76CAF1-F8CC-43F9-8F63-4F48A2857D41}","17000","1995-03-10 00:00","S65 1QJ","T","N","L","22","","DENMAN STREET","ROTHERHAM","ROTHERHAM","ROTHERHAM","SOUTH YORKSHIRE","A","A"
"{709FB471-3690-4945-A9D6-4F48CE65AAB6}","58000","1995-04-28 00:00","PE7 3AL","D","Y","F","4","","BROOK LANE","FARCET","PETERBOROUGH","PETERBOROUGH","CAMBRIDGESHIRE","A","A"
"{5FA8692E-537B-4278-8C67-5A060540506D}","19500","1995-01-27 00:00","SK10 2QW","T","N","L","38","","GARDEN STREET","MACCLESFIELD","MACCLESFIELD","MACCLESFIELD","CHESHIRE","A","A"
"{E78710AD-ED1A-4B11-AB99-5A0614D519AD}","20000","1995-01-16 00:00","SA6 5AY","D","N","F","592","","CLYDACH ROAD","YNYSTAWE","SWANSEA","SWANSEA","SWANSEA","A","A"
"{1DFBF83E-53A7-4813-A37C-5A06247A09A8}","137500","1995-03-31 00:00","NR2 2NQ","D","N","F","26","","LIME TREE ROAD","NORWICH","NORWICH","NORWICH","NORFOLK","A","A"

使用客户端连接服务端

bash 复制代码
clickhouse-client

创建表

bash 复制代码
CREATE TABLE uk_price_paid ( price UInt32, date Date, postcode1 LowCardinality(String), postcode2 LowCardinality(String), type Enum8('terraced' = 1, 'semi-detached' = 2, 'detached' = 3, 'flat' = 4, 'other' = 0), is_new UInt8, duration Enum8('freehold' = 1, 'leasehold' = 2, 'unknown' = 0), addr1 String, addr2 String, street LowCardinality(String), locality LowCardinality(String), town LowCardinality(String), district LowCardinality(String), county LowCardinality(String) ) ENGINE = MergeTree ORDER BY (postcode1, postcode2, addr1, addr2);

导入数据

bash 复制代码
INSERT INTO uk_price_paid WITH splitByChar(' ', postcode) AS p SELECT toUInt32(price_string) AS price, parseDateTimeBestEffortUS(time) AS date, p[1] AS postcode1, p[2] AS postcode2, transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type, b = 'Y' AS is_new, transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county FROM file( 'pp-complete.csv', 'CSV', 'uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String' );

整个处理速度大概是210 thousand rows/s,36.5MB/s。

INSERT INTO uk_price_paid WITH splitByChar(' ', postcode) AS p

SELECT

toUInt32(price_string) AS price,

parseDateTimeBestEffortUS(time) AS date,

p[1] AS postcode1,

p[2] AS postcode2,

transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,

b = 'Y' AS is_new,

transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration,

addr1,

addr2,

street,

locality,

town,

district,

county

FROM file('pp-complete.csv', 'CSV', 'uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String')

Query id: 32a2a670-8417-470d-ab26-6368dd1725e5

Ok.

0 rows in set. Elapsed: 140.063 sec. Processed 28.50 million rows, 4.98 GB (203.46 thousand rows/s., 35.57 MB/s.)

检查数据

检查数据行数

bash 复制代码
SELECT count() From uk_price_paid;

SELECT count()

FROM uk_price_paid

Query id: 2d05b3f1-c683-4f2d-bcaf-e05b777eb3f8

┌──count()───┐

│ 28497127 │

└──────────┘

1 row in set. Elapsed: 0.005 sec.

一共有28,497,127行数据,和文件中行数一致。

检查所占磁盘

bash 复制代码
SELECT formatReadableSize(total_bytes) FROM system.tables WHERE name = 'uk_price_paid';

SELECT formatReadableSize(total_bytes)

FROM system.tables

WHERE name = 'uk_price_paid'

Query id: 7cca5694-6d15-4f38-8f8d-ef8331a4caa3

┌─formatReadableSize(total_bytes)─┐

│ 308.18 MiB │

└──────────────────────┘

1 row in set. Elapsed: 0.007 sec.

和之前文件4G多大小对比,减少了9/10,这个比例是相当大的。

查询

bash 复制代码
SELECT toYear(date), district, town, avg(price), sum(price), count() FROM uk_price_paid  GROUP BY toYear(date), district, town;

80441 rows in set. Elapsed: 2.114 sec. Processed 28.50 million rows, 284.78 MB (13.48 million rows/s., 134.71 MB/s.)

新增PROJECTION

使用下面指令给toYear(date), district, town创建一个PROJECTION ,这样之后插入的数据就会被自动优化。

bash 复制代码
ALTER TABLE uk_price_paid ADD PROJECTION projection_by_year_district_town(SELECT toYear(date), district, town, avg(price), sum(price), count() GROUP BY toYear(date), district, town);

ALTER TABLE uk_price_paid

ADD PROJECTION projection_by_year_district_town

(

SELECT

toYear(date),

district,

town,

avg(price),

sum(price),

count()

GROUP BY

toYear(date),

district,

town

)

Query id: 3c5ca13e-4805-412c-845a-ab18c411261c

Ok.

0 rows in set. Elapsed: 0.007 sec.

然后使用下面指令修改现有数据

bash 复制代码
ALTER TABLE uk_price_paid MATERIALIZE PROJECTION projection_by_year_district_town SETTINGS mutations_sync = 1;

ALTER TABLE uk_price_paid

MATERIALIZE PROJECTION projection_by_year_district_town

SETTINGS mutations_sync = 1

Query id: 7bd22c05-c74c-4972-be6d-174eaf99c498

Ok.

0 rows in set. Elapsed: 0.183 sec.

优化后查询

80441 rows in set. Elapsed: 0.170 sec. Processed 92.93 thousand rows, 5.76 MB (548.06 thousand rows/s., 33.98 MB/s.)

可以看到时间也缩短到未优化的1/10。

参考资料

相关推荐
斯特凡今天也很帅8 小时前
clickhouse常用语句汇总——持续更新中
数据库·sql·clickhouse
SelectDB技术团队1 天前
从 ClickHouse、Druid、Kylin 到 Doris:网易云音乐 PB 级实时分析平台降本增效
大数据·数据仓库·clickhouse·kylin·实时分析
risc1234566 天前
【ClickHouse】RollingBitmap
clickhouse
斯特凡今天也很帅6 天前
clickhouse如何查看操作记录,从日志来查看写入是否成功
数据库·clickhouse
袖清暮雨11 天前
ClickHouse讲解
大数据·数据库·数据仓库·clickhouse·oracle
江枫渔火L13 天前
使用clickhouse的ReplacingMergeTree引擎表做活跃玩家信息表
数据库·clickhouse
潇凝子潇15 天前
Doris ClickHouse Greenplum 对比
clickhouse·doris·greenplum
递归尽头是星辰16 天前
ClickHouse核心优势分析与场景实战
大数据·数据仓库·clickhouse·实时分析·实时查询
鲁尼的小宝贝18 天前
基于Flink的数据中台管理平台
java·大数据·clickhouse·flink·yarn
问道飞鱼22 天前
【大数据知识】今天聊聊Clickhouse部署方案
大数据·clickhouse·部署