机器学习之单层神经网络的训练:增量规则(Delta Rule)

文章目录

  • 神经网络以权值的形式存储信息,根据给定的信息来修改权值的系统方法称为学习规则。由于训练是神经网络系统地存储信息的唯一途径,因此学习规则是神经网络研究中的一个重要组成部分

权重的调整

(Xj 为结点的输入,Yi为结点的输出,Wij为其之间的权重,ei为正确值di 与输出值Yi的误差)

  • 如果一个输入节点导致了输出节点的误差,则两个节点之间的权重按输入值xj和输出误差ei的比例进行调整

那么这个公式:

α=学习率(0< a <1)

  • 学习速率α决定了每次权重的多少。如果这个值过高,输出就会在解决方案中徘徊,无法收敛。相反,如果它太低,计算到达解的速度太慢

单层神经网络使用delta规则的训练过程

1.以足够的值初始化权重。

2.从{输入,正确输出}的训练数据中取"输入",输入神经网络。计算从正确的输出di到输入的输出yi的误差。

3.根据以下delta规则计算权重更新:

4。调整重量为:

5。对所有训练数据执行步骤2-4。

6.重复步骤2-5,直到误差达到可接受的公差水平。

  • 这些步骤几乎与"神经网络的监督学习"部分中的监督学习过程完全相同。唯一的区别是增加了步骤6。步骤6只是说明整个训练过程是重复的。一旦完成步骤5,就用每个数据点对模型进行训练。那么,为什么我们要使用所有相同的训练数据来训练它呢?这是因为delta规则在重复这个过程时搜索解决方案,而不是一次性解决它。3整个过程重复进行,因为用相同的数据再训练模型可能会改进模型。

训练过程

相关推荐
king of code porter23 分钟前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体
愚公搬代码27 分钟前
【愚公系列】《AI短视频创作一本通》004-AI短视频的准备工作(创作AI短视频的基本流程)
人工智能·音视频
物联网软硬件开发-轨物科技29 分钟前
【轨物洞见】告别“被动维修”!预测性运维如何重塑老旧电站的资产价值?
运维·人工智能
电商API_1800790524729 分钟前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
梁辰兴43 分钟前
百亿美元赌注变数,AI军备竞赛迎来转折点?
人工智能·ai·大模型·openai·英伟达·梁辰兴·ai军备竞赛
PaperRed ai写作降重助手1 小时前
智能写作ai论文生成软件推荐
人工智能·aigc·ai写作·智能降重·paperred
龙山云仓1 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
IT·小灰灰1 小时前
30行PHP,利用硅基流动API,网页客服瞬间上线
开发语言·人工智能·aigc·php
新缸中之脑2 小时前
编码代理的未来
人工智能
Anarkh_Lee2 小时前
【小白也能实现智能问数智能体】使用开源的universal-db-mcp在coze中实现问数 AskDB智能体
数据库·人工智能·ai·开源·ai编程