机器学习之单层神经网络的训练:增量规则(Delta Rule)

文章目录

  • 神经网络以权值的形式存储信息,根据给定的信息来修改权值的系统方法称为学习规则。由于训练是神经网络系统地存储信息的唯一途径,因此学习规则是神经网络研究中的一个重要组成部分

权重的调整

(Xj 为结点的输入,Yi为结点的输出,Wij为其之间的权重,ei为正确值di 与输出值Yi的误差)

  • 如果一个输入节点导致了输出节点的误差,则两个节点之间的权重按输入值xj和输出误差ei的比例进行调整

那么这个公式:

α=学习率(0< a <1)

  • 学习速率α决定了每次权重的多少。如果这个值过高,输出就会在解决方案中徘徊,无法收敛。相反,如果它太低,计算到达解的速度太慢

单层神经网络使用delta规则的训练过程

1.以足够的值初始化权重。

2.从{输入,正确输出}的训练数据中取"输入",输入神经网络。计算从正确的输出di到输入的输出yi的误差。

3.根据以下delta规则计算权重更新:

4。调整重量为:

5。对所有训练数据执行步骤2-4。

6.重复步骤2-5,直到误差达到可接受的公差水平。

  • 这些步骤几乎与"神经网络的监督学习"部分中的监督学习过程完全相同。唯一的区别是增加了步骤6。步骤6只是说明整个训练过程是重复的。一旦完成步骤5,就用每个数据点对模型进行训练。那么,为什么我们要使用所有相同的训练数据来训练它呢?这是因为delta规则在重复这个过程时搜索解决方案,而不是一次性解决它。3整个过程重复进行,因为用相同的数据再训练模型可能会改进模型。

训练过程

相关推荐
机器学习之心几秒前
MATLAB灰狼优化算法(GWO)改进物理信息神经网络(PINN)光伏功率预测
神经网络·算法·matlab·物理信息神经网络
向上的车轮2 分钟前
AI编辑器的兴起:如何用好AI编辑器解决实际问题?
人工智能·编辑器
咚咚王者3 分钟前
人工智能之核心基础 机器学习 第十一章 无监督学习总结
人工智能·学习·机器学习
WhereIsMyChair4 分钟前
一文解读端到端生成式推广搜系统
人工智能·搜索
筑梦悠然5 分钟前
AI的攻坚克难
人工智能
白日做梦Q9 分钟前
实时语义分割:BiSeNet与Fast-SCNN深度对比与实践启示
人工智能·深度学习·计算机视觉
云和数据.ChenGuang10 分钟前
Uvicorn 是 **Python 生态中用于运行异步 Web 应用的 ASGI 服务器**
服务器·前端·人工智能·python·机器学习
IT_陈寒11 分钟前
SpringBoot 3.0实战:这5个新特性让你的开发效率提升50%
前端·人工智能·后端
mr_orange_klj14 分钟前
k8s StorageClass和Provisoner的AI问答(豆包)
人工智能·容器·kubernetes
向量引擎16 分钟前
复刻“疯狂的鸽子”?用Python调用Sora2与Gemini-3-Pro实现全自动热点视频流水线(附源码解析)
开发语言·人工智能·python·gpt·ai·ai编程·api调用