windows WSL配置cuda,pytorch和jupyter notebook

机器配置

GPU: NVIDIA Quadro K2000

与 NVIDIA 驱动程序捆绑的CUDA版本

但按照维基百科的描述,我的GPU对应的compute capability=3.0,允许安装的CUDA最高只支持10.2,如下所示。

为什么本地会显示11.4呢?对此,GPT是这么给出解释的。

因此,为了满足运行pytorch程序的硬件需求,我最高只能安装CUDA=10.2,按照pytorch官网给出的对应CUDA=10.2的版本,去安装对应的pytorch。首先,我需要在我的ubuntu子系统安装CUDA=10.2。

WSL安装CUDA=10.2

conda创建一个新的环境,指定cuda版本。

复制代码
# conda在创建新环境时指定CUDA版本
conda create -n myenv python=3.8 cudatoolkit=10.2

找到对应CUDA=10.2的pytorch

找pytorch的previous versions,定位Conda的CUDA=10.2版本,安装即可。

测试CUDA是否可用

参考pytorch官网给出的解答,可以通过以下命令来验证。

python 复制代码
# 命令行输入
python

# 检验pytorch是否安装成功
import torch
x = torch.rand(5, 3)
print(x)

# 检验CUDA 驱动程序是否已启用并可用于PyTorch
import torch
torch.cuda.is_available()

最终输出的结果如下所示,表示已经配置好了。

Jupyter notebook安装

python 复制代码
# anaconda环境,只需一行命令
 conda install notebook

安装成功,运行如下所示。copy链接,在浏览器打开即可。

后记

安装过程中的其他问题:

  1. 在windows WSL上安装CUDA=10.2,我用apt安装呢,还是conda安装比较好?

  2. 要给WSL2配置CUDA支持,只需到NIVIDIA官网下载并安装对应GPU的最新驱动。
  3. 确保Anaconda和WSL2已经配置完成,我这里安装的是ubuntu 22.04.2 LTS。
  4. 注意到我这里WSL安装CUDA=10.2只用了一行命令,和其他教程自己手动到官网下载cuda,cudnn等操作相比,更加精简和不易出错。
  5. 本文下载资源、用到的命令涉及的所有链接整理:
    查询GPU的compute capability
    https://en.m.wikipedia.org/wiki/CUDA#GPUs_supported
    查询pytorch的历史版本及安装命令
    https://pytorch.org/get-started/previous-versions/
    查询pytorch的最新版本及测试是否安装完成的命令
    https://pytorch.org/get-started/locally/
    下载CUDA最新驱动
    https://www.nvidia.com/download/index.aspx
    感谢ernest大佬的技术支持!
相关推荐
User_芊芊君子1 天前
AI Ping 深度评测:大模型 API 选型的 “理性决策中枢”,终结经验主义选型时代
人工智能
明天再做行么1 天前
一些我用人工智能 翻译文章的心得
人工智能
晚霞的不甘1 天前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
飞Link1 天前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
老蒋新思维1 天前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
老蒋新思维1 天前
创客匠人峰会深度解析:智能体驱动知识变现的数字资产化路径 —— 创始人 IP 的长期增长密码
人工智能·网络协议·tcp/ip·重构·知识付费·创始人ip·创客匠人
为爱停留1 天前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
像风没有归宿a1 天前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能
深鱼~1 天前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能