多通道反向字典模型

方法

将单词的definition embedding输入Bi-LSTM模型,经过处理得到5个分数并加权求和得到最终的置信分数

最后对分数向量进行降序排序,得到word rank
代码实现
_, indices = torch.sort(score, descending=True)

辅助信息

这是AAAI 2020的论文,作者尚未提供附录

相关推荐
新缸中之脑7 分钟前
氛围编程一个全栈AI交易应用
人工智能
码云数智-大飞10 分钟前
Oracle RAS:AI时代守护企业数据安全的智能盾牌
数据库·人工智能·oracle
余俊晖11 分钟前
Qwen3-VL-0.6B?Reyes轻量化折腾:一个从0到1开始训练的0.6B参数量的多模态大模型
人工智能·自然语言处理·多模态
zuozewei15 分钟前
7D-AI系列:DeepSeek Engram 架构代码分析
人工智能·架构
love530love18 分钟前
技术复盘:llama-cpp-python CUDA 编译实战 (Windows)
人工智能·windows·python·llama·aitechlab·cpp-python·cuda版本
Katecat9966323 分钟前
基于YOLO11-HAFB-1的五种羊品种分类识别系统详解
人工智能·数据挖掘
旧日之血_Hayter23 分钟前
Java线程池实战:高效并发编程技巧
人工智能
hit56实验室34 分钟前
【易经系列】《屯卦》六二:屯如邅如,乘马班如,匪寇,婚媾。女子贞不字,十年乃字。
人工智能
丝斯20111 小时前
AI学习笔记整理(67)——大模型的Benchmark(基准测试)
人工智能·笔记·学习
咚咚王者1 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习