Hive【Hive(五)函数-高级聚合函数、炸裂函数】

高级聚合函数

多进一出(多行输入,一个输出)

普通聚合函数:count、sum ...

1)collect_list():收集并形成 list 集合,结果不去重

sql 复制代码
select sex,collect_list(job)
from employee
group by sex;
--女	["行政","研发","行政","前台"]
--男	["销售","研发","销售","前台"]

2)collect_set():收集并形成 set 集合,结果去重

sql 复制代码
select sex,collect_set(job)
from employee
group by sex;
--女	["行政","研发","前台"]
--男	["销售","研发","前台"]

案例

1)每个月的入职人数以及姓名
sql 复制代码
select month(replace(hire_date,'/','-')) as month,
       count(*) cnt,
       collect_list(name) as name_list
from employee
group by month(replace(hire_date,'/','-'));

运行结果:

sql 复制代码
month  cnt  name_list
4	    2	["宋青书","周芷若"]
6	    1	["黄蓉"]
7	    1	["郭靖"]
8	    2	["张无忌","杨过"]
9	    2	["赵敏","小龙女"]

炸裂函数(UDTF)

接受一行数据,输出一行或多行数据。

TF(Table-Genrating Functions),表生成函数,也就是说这个函数的结果是一张表。

1、常用 UDTF - explode(array<T> a)

explode(array<T> a)接受一个数组类型的参数,它会把这一个数组炸裂成一个列(多行)。

语法
sql 复制代码
select explode(array("a","b","c"))as item;
-- item
-- a
-- b
-- c

2、 常用 UDTF - explode(Map<K,V> m)

返回多行2列(key,value)。

语法

注意:不加别名时,它默认的字段也是 key 和 value,我们自定义多个字段名时需要加括号。

sql 复制代码
select explode(map('hadoop','1','spark',2)) as (key,value);
-- key  value
-- hadoop 1
-- spark 2

3、常用 UDTF - posexplode(array<T> a)

接受一个数组 array ,pos 的意思是 position ,也就是数组的下标。它返回多行两列,一列为 pos(索引) ,一列是 val(值)。

sql 复制代码
select posexplode(array('a','b','c'));
-- pos val
-- 0    a
-- 1    b
-- 2    c

4、常用 UDTF - inline(array<struct<f1:T1,...,fn:Tn>> a)

它接受一个 结构体数组 ,返回多行多列,列数=结构体的属性数量。

注意:每个结构体的属性数量必须一致。

sql 复制代码
select inline(array(
    named_struct("id",1,"name","zs","age",15),
    named_struct("id",2,"name","ls","age",17),
    named_struct("id",3,"name","ww","age",23)
    )) as (id,name,age);

运行结果:

Lateral View(常用)

Lateral View 通常与UDTF 配合使用。它可以将UDTF应用到源表的每行数据,UDTF会将每行数据转换为一行或多行,Lateral View会将源表中每行的输出结果与该行连接起来,形成一个虚拟表。

数据准备
sql 复制代码
create table movie_info(
    movie string,     --电影名称
    category string   --电影分类
)
row format delimited fields terminated by "\t";

insert overwrite table movie_info
values ("《疑犯追踪》", "悬疑,动作,科幻,剧情"),
       ("《Lie to me》", "悬疑,警匪,动作,心理,剧情"),
       ("《战狼2》", "战争,动作,灾难");
函数演示
sql 复制代码
select
    movie,
    category_name
from
movie_info
lateral view
explode(split(category,",")) movie_info_tmp as category_name;

运行结果:

sql 复制代码
select cate,count(*)
from (
    select movie,cate
    from (
        select movie,
            split(category,',') cates
        from movie_info
         )t1 lateral view explode(cates) tmp as cate
)t2
group by cate;

运行结果:

窗口函数

明天写

相关推荐
无级程序员3 小时前
大数据Hive之拉链表增量取数合并设计(主表加历史表合并成拉链表)
大数据·hive·hadoop
华农DrLai5 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
心疼你的一切15 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
qq_124987075318 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
十月南城20 小时前
Hive与离线数仓方法论——分层建模、分区与桶的取舍与查询代价
数据仓库·hive·hadoop
鹏说大数据1 天前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人1 天前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
AI架构师小马1 天前
Hive调优手册:从入门到精通的完整指南
数据仓库·hive·hadoop·ai
数据架构师的AI之路1 天前
深入了解大数据领域Hive的HQL语言特性
大数据·hive·hadoop·ai