KNN算法与SVM支持向量机

KNN算法

KNN算法就是把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由K近邻对分类对象进行判断为那个类别。这种方法的效果好,但是也有弊端,与K-means聚类算法一样,需要先预定设置k的值,k值的选择会影响分类的性能。此外这种方法要求整个训练集存储起来,如果训练集偏大,搜索就慢,训练集偏小,分类结果准确率也就低。对于大的训练集,采取某些装箱形式通常会减少对比的次数。

SVM支持向量机

SVM支持向量机是一类强大的分类算法,最简单的SVM通过在高维空间中寻找一个最优线性分类面,对于特征向量x的决策函数为:

其中w是常规超平面,b是偏移量常数,阈值为0,有一类为正数或负数,求解带有标记的最优化问题,从而找到决策函数的参数。常规解释训练集上某些特征向量的线性组合为:

其中i是训练集中选出的部分样本,称为支持向量,它们可以帮助定义分类的边界。决策函数即变为:

SVM另一个优势是可以使用核函数 ,将特征向量映射到另一个不同维度的空间中。

相关推荐
新缸中之脑3 分钟前
氛围编程一个全栈AI交易应用
人工智能
码云数智-大飞7 分钟前
Oracle RAS:AI时代守护企业数据安全的智能盾牌
数据库·人工智能·oracle
余俊晖7 分钟前
Qwen3-VL-0.6B?Reyes轻量化折腾:一个从0到1开始训练的0.6B参数量的多模态大模型
人工智能·自然语言处理·多模态
zuozewei11 分钟前
7D-AI系列:DeepSeek Engram 架构代码分析
人工智能·架构
love530love14 分钟前
技术复盘:llama-cpp-python CUDA 编译实战 (Windows)
人工智能·windows·python·llama·aitechlab·cpp-python·cuda版本
Katecat9966319 分钟前
基于YOLO11-HAFB-1的五种羊品种分类识别系统详解
人工智能·数据挖掘
旧日之血_Hayter20 分钟前
Java线程池实战:高效并发编程技巧
人工智能
hit56实验室31 分钟前
【易经系列】《屯卦》六二:屯如邅如,乘马班如,匪寇,婚媾。女子贞不字,十年乃字。
人工智能
丝斯20111 小时前
AI学习笔记整理(67)——大模型的Benchmark(基准测试)
人工智能·笔记·学习
咚咚王者1 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习