python经典百题之求奇数个数

题目:求0---7所能组成的奇数个数

解题思路

这题目的本质是求由0到7组成的奇数的个数。首先,我们可以观察到奇数的特点是末位一定是1、3、5、7。其次,首位可以是0(但如果只有一位数的话就不算),其他位可以是0到7的任意数字。

  1. 固定首位为1,其他位可以有8种选择(0到7),末位必须是1、3、5、7,共4种情况,所以总共有 1 * 8 * 4 = 32 个奇数。
  2. 固定首位为3,其他位同样有8种选择,末位也是4种情况,总共有 1 * 8 * 4 = 32 个奇数。
  3. 固定首位为5,其他位有8种选择,末位也是4种情况,总共有 1 * 8 * 4 = 32 个奇数。

所以,总的奇数个数为 32 * 3 = 96 个。

现在,让我们使用3种不同的方法来实现这个求解问题。

方法1: 直接计算

  • 实现代码
python 复制代码
def count_odd_numbers_method1():
    count = 0
    for first_digit in range(8):  # First digit can be 0 to 7
        if first_digit % 2 != 0:  # Ensure the first digit is odd
            count += 4 * 8 ** 6  # 8 options for each of the remaining 6 digits
    return count


# 调用方法1计算奇数个数
result_method1 = count_odd_numbers_method1()
print("Method 1 - Total odd numbers:", result_method1)
  • 优点
    • 直接按照奇数的规律计算,简单直接。
  • 缺点
    • 可能不够灵活,不适用于一般性的奇数个数计算问题。

方法2: 利用数学性质

  • 解题思路

    • 固定首位为1,剩下的6位可以有8种选择,末位可以有4种选择,因此总奇数个数为 1 * 8 * 4 = 32
    • 由于存在3组这样的数字(以1、3、5为首位),因此总奇数个数为 32 * 3 = 96
  • 实现代码

python 复制代码
def count_odd_numbers_method2():
    return 32 * 3  # Total odd numbers


# 调用方法2计算奇数个数
result_method2 = count_odd_numbers_method2()
print("Method 2 - Total odd numbers:", result_method2)
  • 优点
    • 使用数学性质,简洁高效。
  • 缺点
    • 需要理解奇数的性质,不适用于复杂问题。

方法3: 通用方法

  • 解题思路

    • 编写通用函数,计算在给定数字范围内以特定首位的奇数个数。
    • 根据特定首位1、3、5分别调用该函数,然后累加得到总奇数个数。
  • 实现代码

python 复制代码
def count_odd_numbers_with_first_digit(first_digit, num_remaining_digits):
    if num_remaining_digits == 0:
        return 1 if first_digit % 2 != 0 else 0

    count = 0
    for next_digit in range(8):  # Next digit can be 0 to 7
        count += count_odd_numbers_with_first_digit(first_digit, num_remaining_digits - 1)
    return count


def count_odd_numbers_method3():
    total_count = 0
    for first_digit in [1, 3, 5]:  # First digit can be 1, 3, or 5
        total_count += count_odd_numbers_with_first_digit(first_digit, 6)  # 6 remaining digits
    return total_count


# 调用方法3计算奇数个数
result_method3 = count_odd_numbers_method3()
print("Method 3 - Total odd numbers:", result_method3)
  • 优点
    • 通用性强,适用于各种奇数个数计算问题。
  • 缺点
    • 递归方式可能导致较大的计算复杂度,不适用于特别大的问题。

总结和推荐

  • 在这种特定问题中,方法2是最简单、高效的解决方案,通过直接数学计算得到答案。
  • 对于一般性问题或需要通用解决方案的情况,方法3是更好的选择,它具有通用性和灵活性,适用于不同的奇数个数计算问题。
相关推荐
盛寒1 小时前
向量与向量组的线性相关性 线性代数
线性代数·算法
屁股割了还要学3 小时前
快速过一遍Python基础语法
开发语言·python·学习·青少年编程
学不动CV了5 小时前
C语言32个关键字
c语言·开发语言·arm开发·单片机·算法
你怎么知道我是队长5 小时前
python-enumrate函数
开发语言·chrome·python
小屁孩大帅-杨一凡6 小时前
如何解决ThreadLocal内存泄漏问题?
java·开发语言·jvm·算法
大熋6 小时前
Playwright Python 教程:网页自动化
开发语言·python·自动化
A7bert7776 小时前
【YOLOv8-obb部署至RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·python·yolo
cdg==吃蛋糕6 小时前
selenium 使用方法
开发语言·python
Y1nhl7 小时前
力扣_二叉树的BFS_python版本
python·算法·leetcode·职场和发展·宽度优先
Q_Q5110082858 小时前
python的婚纱影楼管理系统
开发语言·spring boot·python·django·flask·node.js·php