【线性代数】齐次与非齐次线性方程组有解的条件

齐次线性方程组 AX = 0 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则齐次线性方程组 A X = 0 \bm{AX} = \bm{0} AX=0 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = 0 x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{0} x1a1+x2a2+...+xnan=0

该齐次方程组有非零解的充分必要条件是 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an线性相关,又因 r ( A ) = r { a 1 , a 2 , . . . , a n } r(A) = r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r(A)=r{a1,a2,...,an},所以有以下定理:

定理1:齐次线性方程组 AX = 0 有非零解的充分必要条件是 r(A) < n,即r(A)小于A的列数。

定理1的等价描述:齐次线性方程组 AX = 0 只有零解的充分必要条件是 r(A) = n,即r(A)等于A的列数。

非齐次线性方程组 AX = b 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = b x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{b} x1a1+x2a2+...+xnan=b

可以看出,该方程组有解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,这等价于

r { a 1 , a 2 , . . . , a n } = r { b , a 1 , a 2 , . . . , a n } r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} = r\{\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r{a1,a2,...,an}=r{b,a1,a2,...,an}

于是,可以得到以下定理:

定理2 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有解 的充分必要条件是 r ( A ) = r { A ~ } r(A) = r\{\widetilde{A}\} r(A)=r{A },这里 A ~ \widetilde{A} A 是该方程组的增广矩阵 [ A , b ] . [A, b]. [A,b].

另外,从方程组的向量表达式可以看出,其有唯一解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,且表示方式唯一。这不仅要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an 与 b , a 1 , a 2 , . . . , a n {\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n} b,a1,a2,...,an 有相同的秩,还要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an线性无关,因此有以下定理:

定理3 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有唯一解 的充分必要条件是 r ( A ) = r { A ~ } = n r(A) = r\{\widetilde{A}\} = n r(A)=r{A }=n,这里 A ~ = [ A , b ] . \widetilde{A} = [A, b]. A =[A,b].

定理3的等价命题 : A X = b \bm{AX} = \bm{b} AX=b 有无穷多解 的充分必要条件是 r ( A ) = r { A ~ } < n r(A) = r\{\widetilde{A}\} < n r(A)=r{A }<n.

参考来源

  1. 线性代数. 杨刚,吴惠彬编. 北京:高等教育出版社,2007. 8
相关推荐
淮雵的Blog11 分钟前
langGraph通俗易懂的解释、langGraph和使用API直接调用LLM的区别
人工智能
Mintopia14 分钟前
🚀 共绩算力:3分钟拥有自己的文生图AI服务-容器化部署 StableDiffusion1.5-WebUI 应用
前端·人工智能·aigc
HPC_C21 分钟前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
王哈哈^_^29 分钟前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
songyuc1 小时前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
码界奇点1 小时前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马1 小时前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
pingao1413781 小时前
冰雪环境无忧测:冬季加热激光雪深监测站保障道路安全与气象研究
人工智能·安全
AndrewHZ1 小时前
【图像处理基石】提升图像通透感:从原理到实操的完整指南
图像处理·人工智能·计算机视觉·cv·对比度·动态范围·通透感
草莓熊Lotso1 小时前
C++ 方向 Web 自动化测试实战:以博客系统为例,从用例到报告全流程解析
前端·网络·c++·人工智能·后端·python·功能测试