【线性代数】齐次与非齐次线性方程组有解的条件

齐次线性方程组 AX = 0 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则齐次线性方程组 A X = 0 \bm{AX} = \bm{0} AX=0 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = 0 x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{0} x1a1+x2a2+...+xnan=0

该齐次方程组有非零解的充分必要条件是 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an线性相关,又因 r ( A ) = r { a 1 , a 2 , . . . , a n } r(A) = r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r(A)=r{a1,a2,...,an},所以有以下定理:

定理1:齐次线性方程组 AX = 0 有非零解的充分必要条件是 r(A) < n,即r(A)小于A的列数。

定理1的等价描述:齐次线性方程组 AX = 0 只有零解的充分必要条件是 r(A) = n,即r(A)等于A的列数。

非齐次线性方程组 AX = b 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = b x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{b} x1a1+x2a2+...+xnan=b

可以看出,该方程组有解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,这等价于

r { a 1 , a 2 , . . . , a n } = r { b , a 1 , a 2 , . . . , a n } r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} = r\{\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r{a1,a2,...,an}=r{b,a1,a2,...,an}

于是,可以得到以下定理:

定理2 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有解 的充分必要条件是 r ( A ) = r { A ~ } r(A) = r\{\widetilde{A}\} r(A)=r{A },这里 A ~ \widetilde{A} A 是该方程组的增广矩阵 [ A , b ] . [A, b]. [A,b].

另外,从方程组的向量表达式可以看出,其有唯一解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,且表示方式唯一。这不仅要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an 与 b , a 1 , a 2 , . . . , a n {\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n} b,a1,a2,...,an 有相同的秩,还要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an线性无关,因此有以下定理:

定理3 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有唯一解 的充分必要条件是 r ( A ) = r { A ~ } = n r(A) = r\{\widetilde{A}\} = n r(A)=r{A }=n,这里 A ~ = [ A , b ] . \widetilde{A} = [A, b]. A =[A,b].

定理3的等价命题 : A X = b \bm{AX} = \bm{b} AX=b 有无穷多解 的充分必要条件是 r ( A ) = r { A ~ } < n r(A) = r\{\widetilde{A}\} < n r(A)=r{A }<n.

参考来源

  1. 线性代数. 杨刚,吴惠彬编. 北京:高等教育出版社,2007. 8
相关推荐
大模型真好玩8 分钟前
大模型工程面试经典(七)—如何评估大模型微调效果?
人工智能·面试·deepseek
黎燃8 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊10 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠10 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶13 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云13 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术13 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新14 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心14 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算14 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc