【线性代数】齐次与非齐次线性方程组有解的条件

齐次线性方程组 AX = 0 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则齐次线性方程组 A X = 0 \bm{AX} = \bm{0} AX=0 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = 0 x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{0} x1a1+x2a2+...+xnan=0

该齐次方程组有非零解的充分必要条件是 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an线性相关,又因 r ( A ) = r { a 1 , a 2 , . . . , a n } r(A) = r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r(A)=r{a1,a2,...,an},所以有以下定理:

定理1:齐次线性方程组 AX = 0 有非零解的充分必要条件是 r(A) < n,即r(A)小于A的列数。

定理1的等价描述:齐次线性方程组 AX = 0 只有零解的充分必要条件是 r(A) = n,即r(A)等于A的列数。

非齐次线性方程组 AX = b 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = b x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{b} x1a1+x2a2+...+xnan=b

可以看出,该方程组有解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,这等价于

r { a 1 , a 2 , . . . , a n } = r { b , a 1 , a 2 , . . . , a n } r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} = r\{\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r{a1,a2,...,an}=r{b,a1,a2,...,an}

于是,可以得到以下定理:

定理2 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有解 的充分必要条件是 r ( A ) = r { A ~ } r(A) = r\{\widetilde{A}\} r(A)=r{A },这里 A ~ \widetilde{A} A 是该方程组的增广矩阵 [ A , b ] . [A, b]. [A,b].

另外,从方程组的向量表达式可以看出,其有唯一解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,且表示方式唯一。这不仅要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an 与 b , a 1 , a 2 , . . . , a n {\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n} b,a1,a2,...,an 有相同的秩,还要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an线性无关,因此有以下定理:

定理3 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有唯一解 的充分必要条件是 r ( A ) = r { A ~ } = n r(A) = r\{\widetilde{A}\} = n r(A)=r{A }=n,这里 A ~ = [ A , b ] . \widetilde{A} = [A, b]. A =[A,b].

定理3的等价命题 : A X = b \bm{AX} = \bm{b} AX=b 有无穷多解 的充分必要条件是 r ( A ) = r { A ~ } < n r(A) = r\{\widetilde{A}\} < n r(A)=r{A }<n.

参考来源

  1. 线性代数. 杨刚,吴惠彬编. 北京:高等教育出版社,2007. 8
相关推荐
Fine姐30 分钟前
数据挖掘 4.1~4.7 机器学习性能评估参数
人工智能·机器学习·数据挖掘
无规则ai43 分钟前
动手学深度学习(pytorch版):第六章节—卷积神经网络(1)从全连接层到卷积
人工智能·pytorch·python·深度学习·cnn
wenzhangli71 小时前
Qoder初体验:从下载到运行OneCode-RAD的完整实战指南
人工智能·开源
心动啊1211 小时前
支持向量机
算法·机器学习·支持向量机
计算机源码社1 小时前
计算机毕设选题推荐 基于Spark的家庭能源消耗智能分析与可视化系统 基于机器学习的家庭能源消耗预测与可视化系统源码
大数据·机器学习·数据分析·spark·毕业设计·课程设计·毕业设计源码
MansFlower2 小时前
静默发布:DeepSeek-V3.1
人工智能·开源
mit6.8242 小时前
[RestGPT] OpenAPI规范(OAS)
人工智能·python
悦人楼3 小时前
深入探讨集成学习:Bagging与Boosting的核心原理与实践
机器学习·集成学习·boosting
算家计算3 小时前
一句话生成爆款视频!GPT-5赋能Agent,视频创作进入智能体时代
人工智能·aigc·agent
算家计算3 小时前
使用指南 | Coze Studio 一站式AI智能体开发平台:低代码+多模型+RAG,快速打造你的专业级 AI Agent!
人工智能·agent·coze