【线性代数】齐次与非齐次线性方程组有解的条件

齐次线性方程组 AX = 0 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则齐次线性方程组 A X = 0 \bm{AX} = \bm{0} AX=0 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = 0 x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{0} x1a1+x2a2+...+xnan=0

该齐次方程组有非零解的充分必要条件是 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an线性相关,又因 r ( A ) = r { a 1 , a 2 , . . . , a n } r(A) = r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r(A)=r{a1,a2,...,an},所以有以下定理:

定理1:齐次线性方程组 AX = 0 有非零解的充分必要条件是 r(A) < n,即r(A)小于A的列数。

定理1的等价描述:齐次线性方程组 AX = 0 只有零解的充分必要条件是 r(A) = n,即r(A)等于A的列数。

非齐次线性方程组 AX = b 的解

A \bm{A} A 是 m × n m \times n m×n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [\bm{a}_1, \bm{a}_2, ..., \bm{a}_n] A=[a1,a2,...,an],则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 的向量表达式为:

x 1 a 1 + x 2 a 2 + . . . + x n a n = b x_1\bm{a}_1 + x_2\bm{a}_2 + ... + x_n\bm{a}_n = \bm{b} x1a1+x2a2+...+xnan=b

可以看出,该方程组有解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,这等价于

r { a 1 , a 2 , . . . , a n } = r { b , a 1 , a 2 , . . . , a n } r\{\bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} = r\{\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n\} r{a1,a2,...,an}=r{b,a1,a2,...,an}

于是,可以得到以下定理:

定理2 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有解 的充分必要条件是 r ( A ) = r { A ~ } r(A) = r\{\widetilde{A}\} r(A)=r{A },这里 A ~ \widetilde{A} A 是该方程组的增广矩阵 [ A , b ] . [A, b]. [A,b].

另外,从方程组的向量表达式可以看出,其有唯一解的充分必要条件是 b \bm{b} b 可以由 a 1 , a 2 , . . . , a n \bm{a}_1, \bm{a}_2, ..., \bm{a}_n a1,a2,...,an 线性表示,且表示方式唯一。这不仅要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an 与 b , a 1 , a 2 , . . . , a n {\bm{b}, \bm{a}_1, \bm{a}_2, ..., \bm{a}_n} b,a1,a2,...,an 有相同的秩,还要求 a 1 , a 2 , . . . , a n {\bm{a}_1, \bm{a}_2, ..., \bm{a}_n} a1,a2,...,an线性无关,因此有以下定理:

定理3 :设 A \bm{A} A 是 m × n m \times n m×n 矩阵, b \bm{b} b 是 m × 1 m \times 1 m×1 矩阵,则非齐次线性方程组 A X = b \bm{AX} = \bm{b} AX=b 有唯一解 的充分必要条件是 r ( A ) = r { A ~ } = n r(A) = r\{\widetilde{A}\} = n r(A)=r{A }=n,这里 A ~ = [ A , b ] . \widetilde{A} = [A, b]. A =[A,b].

定理3的等价命题 : A X = b \bm{AX} = \bm{b} AX=b 有无穷多解 的充分必要条件是 r ( A ) = r { A ~ } < n r(A) = r\{\widetilde{A}\} < n r(A)=r{A }<n.

参考来源

  1. 线性代数. 杨刚,吴惠彬编. 北京:高等教育出版社,2007. 8
相关推荐
CV实验室2 分钟前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖1 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树1 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
丁浩6662 小时前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家2 小时前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
伏小白白白2 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场2 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链3 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu3 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域3 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源