Pytorch编程基础

文章目录


前言

记录一些pytorch的基本使用方法。


一、导入库

python 复制代码
import torch
from torch.autograd import Variable # 自动求导变量
from torch import nn, optim # 网络层与优化器
from torch.utils.data import TensorDataset, DataLoader # 数据集迭代器

二、张量

1.创建张量

python 复制代码
从列表生成:a = torch.tensor([1,2,3], dtype=int)
全1全0:torch.ones(shape),torch.zeros(shape)
整数序列[m,n):torch.arrange(m,n)
随机数[0,1):torch.rand(3,4)
随机整数[m,n):torch.randint(m,n,shape)
正态分布:torch.randn()
相同形状随机数:b = torch.rand_like(a, dtype=float)

2.属性与方法

python 复制代码
维度:a.ndim;形状:a.shape,a.size()
数值:a[0].item()
类型转换:a.float(),a.type(torch.float32)

3.numpy转换

python 复制代码
array = np.array(tensor)
tensor = torch.from_numpy(array)
tensor = torch.tensor(array)

4.维度变换

python 复制代码
b = a.view(shape) 
b = a.reshape(shape) 

5.运算操作

python 复制代码
a+b,torch.add(a,b[,out=c]), a.add_(b)
a-b,a*b,a/b, a%b,a//b,a**m
平方根:torch.sqrt(a)
矩阵乘法:torch.matmul(a, b)
转置:a.T
求和:torch.sum(a)
均值:.mean(a),中位数:.median(a)
最值:torch.max/min/argmax/argmin(a)

三、自动求导

python 复制代码
x = torch.ones(shape, requires_grad=True)
y = x * x
y.backward()
grad = x.grad

四、模型保存

python 复制代码
1、保存模型:
torch.save(model.state_dict(), 'model.pth')
2、载入模型
model.load_state_dict(torch.load('model.pth'))

五、模型定义

1.层连接

python 复制代码
# 层
nn.Linear(in_features, out_features)
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
nn.MaxPool2d(kernel_size,stride)
nn.LSTM(input_size, hidden_size, num_layers, batch_first)
# 激活函数
self.tanh = nn.Tanh()
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
# 模型序列
self.fc = nn.Sequential(nn.Linear(784,128), nn.ReLU())
self.conv = nn.Sequential(nn.Conv2d(32,64,5,1,2), nn.ReLU(), nn.MaxPool2d(2,2))
self.lstm = nn.LSTM(input_size=28, hidden_size=64, num_layers=1, batch_first=True)

2.损失函数

python 复制代码
nn.MSELoss()
nn.CrossEntropyLoss()

3.优化器

python 复制代码
optim.SGD(model.parameters(), lr=0.1)
optim.Adam(model.parameters(), lr=0.001)

总结

pytorch的张量操作与numpy数组基本一致。模型保存只保存参数,加载时需要重新定义模型。采用继承类的形式来定义模型,在初始化中设置模型参数,在方法中进行前向传播,注意按层要求修改数据形状。

相关推荐
Chef_Chen1 天前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗1 天前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
hele_two1 天前
快速幂算法
c++·python·算法
KG_LLM图谱增强大模型1 天前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
l1t1 天前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
JicasdC123asd1 天前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白1 天前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_801 天前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20201 天前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid1 天前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习