一次解决Pytorch训练时损失和参数出现Nan或者inf的经历

目前在做实验,参考了一个新的网络架构之后发现训练时损失出现Nan,参数了出现了inf的情况,先说说我的排查经历。

首先肯定是打印损失,损失是最容易出现Nan的,有各种原因,网上也有很多解决办法,我这里就不一一赘述了,大伙打开CSDN就一搜就有很多很全的

我的问题是在训练的中间参数中出现了inf,导致最终的损失为NaN或者inf

用下面的代码判断参数是否出现了NaN或者inf

python 复制代码
for i in range(5):   # exam是一个参数列表
    if torch.isnan(exeam[i]).any(): print('下表为{}的元素存在NaN!'.format(i))
    if torch.isinf(exeam[i]).any(): print('下表为{}的元素存在inf!'.format(i))

确定是哪些为NaN之后,直接上Relu或者归一化,很可惜,没用。。。

我参考的文章是这两篇

Vision Transformers for Single Image Dehazing

MixDehazeNet : Mix Structure Block For Image Dehazing Network
这两篇文章中都用到了soft reconstruction。现在我还搞不明白这东西是啥
模仿论文MixDehazeNet的代码,将生成的参数按照下面的代码计算下

python 复制代码
# feat是网络输出的结果,10通道
K, atp, tran, B = torch.split(feat, (1, 3, 3, 3), dim=1)

# x是网络的输入
atp = K * atp - atp + x
tran = K * tran - tran + x
x = K * x - B + x
# H, W是限定的尺寸
rgb = x[:, :, :H, :W]
atp = atp[:, :, :H, :W]
tran = tran[:, :, :H, :W]

这样一弄,问题就解决了

我分析了下原因,代码中的参数出现NaN是因为出现了除以0的情况,加上了soft reconstruction之后(类似于全局残差,关键是后面加上x的那个操作)是原先为0的参数变得不为0了,除以0的情况消失了,就不存在NaN啦。

我是做视觉方向的,全局残差机制(ResNet,FFA-Net)在视觉中可谓是有百利而无一害,所以这样加应该没问题的

疑问
soft reconstruction究竟是什么东西呢?网上的资料甚少,chatGPT也没有给出完全的定义。
还请知道的大佬不吝赐教。

相关推荐
ifeng091810 小时前
HarmonyOS资源加载进阶:惰性加载、预加载与缓存机制
深度学习·缓存·harmonyos
antonytyler10 小时前
机器学习实践项目(二)- 房价预测增强篇 - 特征工程四
人工智能·python·机器学习
Danceful_YJ11 小时前
34.来自Transformers的双向编码器表示(BERT)
人工智能·深度学习·bert
love530love11 小时前
【笔记】xFormers版本与PyTorch、CUDA对应关系及正确安装方法详解
人工智能·pytorch·windows·笔记·python·深度学习·xformers
kev_gogo11 小时前
【链式法则】神经网络中求导时w既是常数也是自变量的辨析(能否对常数求导?)
人工智能·深度学习·神经网络
文真同学11 小时前
《动手学深度学习》6.3~6.4
人工智能·深度学习
机器学习之心12 小时前
NRBO-XGBoost+SHAP分析+新数据预测!机器学习可解释分析不在发愁!提供9种混沌映射方法(tent、chebyshev、singer等)
人工智能·机器学习·nrbo-xgboost
这张生成的图像能检测吗12 小时前
(论文速读)Regor - 渐进式对应点再生实现鲁棒3D配准
人工智能·算法·计算机视觉·配准·3d点云
Danceful_YJ13 小时前
30.注意力汇聚:Nadaraya-Watson 核回归
pytorch·python·深度学习
瞻邈13 小时前
LION运行笔记
人工智能·深度学习