强化学习实践(一)Gym介绍

学了一段时间强化学习的理论,近期准备进行一些算法实践。应用算法的前提是要创建一个合适的仿真环境,目前Openai的Gym(https://gym.openai.com) 是主流的强化学习实验环境库。

Gym已经集成许多开发好的环境,让RL的研究者们可以直接上手使用,而不需要按照论文中的描述重建环境,当然也可以在Gym中构建自己需要的环境。

总的来说,Gym可提供的环境可以归为以下几类:

1. 经典控制

​ 主要是经典强化学习文献中的控制理论问题,像平衡车的控制。

2. Atari游戏

注意,游戏环境需要单独安装下。

3.Robotics机器人模拟

基于Gym开发的机器人3D模拟环境,通过控制机器臂完成一些特定任务。地址

4..开放的Gym

Gym除了提供如此多的环境外,还提供二次开发的接口,让你可以基于Gym搭建自己想要的环境。例子

注意:Github上也有许多基于Gym开发的强化学习环境

参考文献

1.Openai Gym与强化学习_基于gym的强化学习_李子树_的博客-CSDN博客

2.强化学习Openai Gym基础环境搭建_强化学习环境-CSDN博客

  1. Gym安装Atari环境(Windows,Linux适用)_gym atari-CSDN博客
相关推荐
双向335 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户5191495848457 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具8 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户51914958484519 分钟前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
星期天要睡觉23 分钟前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs26 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
什么都想学的阿超35 分钟前
【大语言模型 01】注意力机制数学推导:从零实现Self-Attention
人工智能·语言模型·自然语言处理
大千AI助手2 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光3 小时前
17.迁移学习
人工智能·机器学习·迁移学习