Transformer学习

这里写目录标题

Seq2Seq

语音翻译为何不直接用语音辨识+机器翻译?

因为有的语言没有文字,比如将狗叫翻译出来。

语法分析

将任务转化成翻译任务,硬训一发,效果不错。

文章归类问题

目标检测

Transformer

Encoder结构

multi-head attention block

为何batch-norm 不如 layer-norm?

https://arxiv.org/abs/2003.07845
https://zhuanlan.zhihu.com/p/428620330

Decoder结构

decoder流程

decoder结构

encoder和decoder基本一样,decoder多了一个masked mutil-head attention

decoder比encoder多了一个masked self-attention,why?

因为decoder计算每次都依赖前一个节点的输出,所以a_n只能看到1~n个节点的输出

decoder如何决定自己输出的长度?

增加一个停止token,一般来会跟begin用一个符号

Decoder-Non-autoregressive(NAT)

NAT decoder如何决定输出长度?

  1. 训练一个分类器用来预测输出长度
  2. 输出一个固定的较长的长度,通过END tocken来截取最终输出

优势

  1. AT decoder需要一个一个输出,NAT可以一次输出整个
  2. 较容易控制输出长度,比如在语音合成的应用

劣势

NAT的表现通常不如AT。原因:multi-modality

Transformer结构

cross attention

训练

训练和测试的区别

相关推荐
-To be number.wan5 小时前
Python数据分析:SciPy科学计算
python·学习·数据分析
楼田莉子7 小时前
C++项目:日志&&线程池
linux·c++·学习·visual studio code
weixin_421585017 小时前
表示学习发展历程
学习
EmbedLinX8 小时前
嵌入式Linux之U-Boot
linux·服务器·笔记·学习
听麟9 小时前
HarmonyOS 6.0+ 跨端会议助手APP开发实战:多设备接续与智能纪要全流程落地
分布式·深度学习·华为·区块链·wpf·harmonyos
2401_8362358610 小时前
名片识别产品:技术要点与应用场景深度解析
人工智能·科技·深度学习·ocr
今儿敲了吗10 小时前
23| 画展
c++·笔记·学习·算法
龙山云仓10 小时前
No159:AI中国故事-对话娄敬——戍策长安与AI远见:草根智慧与国都定鼎
人工智能·深度学习·机器学习
我 see your eyes11 小时前
工作软件学习
学习
Coding茶水间12 小时前
基于深度学习的番茄叶子病虫害监测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测