数据挖掘(3)特征化

从数据分析角度,DM分为两类,描述式数据挖掘,预测式数据挖掘。描述式数据挖掘是以简介概要的方式描述数据,并提供数据的一般性质。预测式数据挖掘分析数据建立模型并试图预测新数据集的行为。

DM的分类:

  • 描述式DM:以简洁、概要的方式描述数据、提供数据的有趣的一般性质。
    • 用以产生数据的特征化和比较描述:
      • 特征化:提供给定数据集的简洁汇总(一个数据集)。
      • 比较(区分):提供两个或多个数据集的比较描述,其中一个为主数据集,其他数据集与其进行对比分析。
  • 预测式DM:分析数据,建立模型,试图预测新数据集的行为。

一、数据概化与基于汇总的特征化

1. 数据概化

  1. 更一般的(而不是较低的) 抽象层描述数据。
  2. 将大量的相关数据从一个较低的概念层次转化到一个比较高的层次。
    • 例如:把location维度上将地区概化为城市,甚至是省份
  3. 方法
    • 数据立方体(或OLAP)方法
    • 面向属性的归纳方法

2. 数据立方体(OLAP)方法

  1. 在数据立方体上进行计算和存储结果
  2. 优点:
    1. 数据概化的一种有效实现。
    2. 能计算多种不同的度量值。(count、ave、sum、min、max)
    3. 概化与特征分析通过一系列的数据立方体 操作完成,上钻、下钻操作。
  3. 限制:
    * 只能为 非数值类型 (离散的)维产生的概念分层。
    * 非数值类型:名义型、序数型(属于离散化的属性)。
    * 缺乏智能分析,不能自动确定分析中该使用哪些维,概化到哪个层次。

3. 面向属性归纳(AOI)(重点)

  1. 前提:有大量不同的取值
  2. 可处理连续性数据,比数据立方体更加智能
  3. 基本思想:
    1. 首先使用DB 收集任务相关的数据。
    2. 每个属性 的不同值的个数进行概化(属性删除、属性概化)。
    3. 基本思想:
      1. 首先使用DB 收集任务相关的数据。
      2. 每个属性 的不同值的个数进行概化(属性删除、属性概化)。
    4. 属性删除(重点 )
      1. 一个属性有许多不同数值:且
        • 该属性没有定义概化操作符(没有概念分层)。
          • 一个属性拥有许多不同的数值,却没有定义对他的泛化操作。
        • 或较高层概念可以用其他属性表示。
          • eg:出生日期:birth_date:1995-1-1,出生日期是年龄的更高层次,可以将其表现,所以可以将birth_date删除。
    5. 属性概化(重点)
      1. 若一个属性有许多不同数值,且:在该属性上存在概化操作符(有概念分层),则应当选择该概化操作符,并逐层进行概化。
      2. 概化操作符:层次性,比如birth_day:年月日。

4.特征化(面向属性归纳)

两种方法:

  1. 属性概化阈值控制:(控制属性取值个数)
    • 取值范围:[2-8]
    • 属性的不同值个数大于属性概化阈值,则应当删除或概化。
    • 概化层次太高,可加大阈值(属性下钻);反之,减小阈值(属性上卷)。
  2. 概化关系阈值控制:(控制最后的广义元组数量)
    • 控制最后关系、规则的大小。(最后生成广义元组)
    • 设置阈值:[10-30]
    • 概化关系中不同元组的个数 超过属性概化阈值,则概化。
    • 概化关系太少,可加大阈值(属性下钻);反之,减小阈值(属性上卷)。
    • 概化到最高层(最底层)也不满足,则需要将其删除。

5.例子分析

二、属性相关分析(重点)

  1. 在处理数据中,包含很多与挖掘任务不相关或弱相关的属性,引入属性相关分析。
  2. 如果某个属性可以很好区分该类与其他类,则该属性是任务高度相关的。
  3. 在处理数据中,包含很多与挖掘任务不相关或弱相关的属性,引入属性相关分析。
  4. 如果某个属性可以很好区分该类与其他类,则该属性是任务高度相关的。

1. 属性相关分析法基本思想

  1. 基本思想:给定的数据集,计算某种度量,用于量化属性与给定的类或概念间的相关性。
  2. 常用的度量:信息增益、相关系数、GINI索引、不确定性

2.信息增益法(重点)

  1. 信息增益法:

    1. 决策树归纳学习算法(ID3,C4.5),删除信息量较少的属性,保留信息量较大的属性。
  2. ID3算法

    1. 概念为启发函数。

      • 熵越大、携带的信息量越大、越不容易被预测
    2. 选择具有最大信息增益的属性作为当前划分节点。

    3. 基本原理:

      • 根据类别已知 的训练数据集构造一颗决策树;根据决策树再对类别未知的数据对象进行分类。
      • 每一步选择都是选择最大信息增益。
    4. 决策树:每个节点的选择:选择信息增益最大的属性为当前节点。

    5. 本步骤只是求出不确定性

  3. 通过熵来进行选择

4.属性相关分析步骤

  1. 数据收集:建立目标数据集,以及对比数据集,目标数据集与对比数据集不相交。
  2. 利用保守的AOI方法进行属性相关分析。对初始的数据集进行删除、概化等操作形成候选数据集。
  3. 删除不相关、弱相关的属性。如信息增益度量
  4. 使用AOI产生概念描述:利用更严格的属性概化控制阈值进行属性的归纳。
    • 任务是:概念描述,使用初始目标数据集。
    • 任务是:比较概念描述,使用初始目标数据集,对比数据集。

三、挖掘类比较:区分不同的类

  1. 比较概念中,同一个属性要概化到同一个层次。
  2. d---权
    • qa所包含的Cj中数据行数与qa所涵盖的所有数据行数(包括目标数据集及所有对比数据集)之比

四、常见的统计度量指标

  1. 中心趋势:均值、中位数、模(众数)
    • 众数:如果每个数值仅出现1次则无众数
  2. 数据分布:四分位数、方差、标准差
    • 四分位数:
      • 数值下数据集合的第k个百分位数。
      • 中位数:第50个百分位数
      • 第一个四分位数第25个百分位数;第三个百分位数 :第75个百分位数
      • 中间四分位区间
      • 识别孤立点:
相关推荐
IE066 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器10 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
井底哇哇7 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证7 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩8 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控8 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天9 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1069 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
佛州小李哥10 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技