MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving

1. 摘要

  • 逼真的传感器仿真解决剩余corner case
  • 3个工作
    • 1.实例意识。作者的仿真器用独立的网络分别仿真前台实例和后台环境,以便可以分别控制实例的静态(例如大小和外观)和动态(例如轨迹)属性
    • 2.模块化。作者的仿真器允许在不同的现代NeRF相关主干、采样策略、输入模式等之间灵活切换。希望这种模块化设计能促进给予NeRF的自动驾驶方针的学术进步和工业部署
    • 3.现实。作者的仿真器设置了新的最先进的照片现实主义的结果给出了最佳的模块选择。

2. Nerf最新进展

2.1. Nerf:将场景表达为3D空间的场

  • https://arxiv.org/pdf/2003.08934.pdf

  • 基本思想:3维空间,3D点都向外发射,并且具有一定的体积,可以阻挡其他方向的射线传播

  • 将位置和观察角度 ( x , y , z , θ , ϕ ) (x,y,z,\theta,\phi) (x,y,z,θ,ϕ)转化为 ( R , G , B , δ ) (R,G,B,\delta) (R,G,B,δ),RGB和反射率

  • 渲染出每个点的Color(RGB)+Density(阻挡能力),用渲染的颜色和原图颜色做loss

  • Blend weights:通过前面所有不透明度的积分得到当前点的积分

  • 体渲染:将所有点从近到远排列到一块,利用Blend weights和积分得到当前点的渲染颜色

  • 真实实现Nerf不用积分,计算量大

  • Nerf缺点:

    • 训练慢:需要2~3天,渲染图要几十秒
    • 渲染结果几何比较差
    • 基于静态场景的假设,不适用动态场景(本文主要解决的问题)

2.2. 续改进论文:

2. 主要内容

本文主要解决"基于静态场景的假设,不适用动态场景"的问题

2.1. 之前的工作

2.2. 本文内容:

  • 之前工作在刚体运动的场景比较复杂了,因为通过刚体运动就可以建立

2.3. 其他内容

  • 4D标注:
    • object pose不准,会导致渲染的时候出现汽车跳动的问题
      • 原因:现有的3D目标检测标注不准
        • 1.单目标注的不具有尺度度量(真实世界尺度)
        • 2.不用来做重建,不考虑帧间的一致性
    • 通过mask(车)做仿真
  • 行人和车辆的交换:现在还没考虑分刚体的行人仿真
  • 没有考虑shadow和weather的变化
  • 物理仿真(物理方程)
  • KITTI 10G显存就行了
  • 在waymo数据上做的:标注框不是很准,但是直行还行,转弯不行
    • nuscenes数据集:camera pose /object pose都不是很准,试验很多次效果不好
相关推荐
m0_6501082412 小时前
AD-GS:面向自监督自动驾驶场景的目标感知 B 样条高斯 splatting 技术
论文阅读·人工智能·自动驾驶·基于高斯泼溅的自监督框架·高质量场景渲染
王锋(oxwangfeng)12 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
布谷鸟科技cookoo19 小时前
布谷鸟科技走进小鹏汽车,解构远程驾驶全栈解决方案
人工智能·科技·ai·自动驾驶·边缘计算·远程驾驶
Wishell201520 小时前
FPGA教程系列- 存储结构与参数化
仿真
数据与后端架构提升之路2 天前
实战:手搓一个“BEV 级”自动驾驶训练加速平台 —— 当 RTX 4090 遇上多模态数据
人工智能·机器学习·自动驾驶
Sanse_2 天前
Ubuntu18.04下面配置阿木实验室amov仿真系统Promethus的一系列运行环境
人工智能·机器人·自动驾驶
康谋自动驾驶2 天前
汽车多总线数据采集:挑战、架构与同步策略全解析
算法·自动驾驶·开发·数据处理·总线数据
Mr.Winter`2 天前
轨迹优化 | 微分动态规划DDP与迭代线性二次型调节器iLQR理论推导
人工智能·算法·机器人·自动驾驶·动态规划·ros·具身智能
国科安芯3 天前
无人驾驶物流车网关的多路CANFD冗余架构与通信可靠性分析
单片机·嵌入式硬件·性能优化·架构·自动驾驶·安全性测试