MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving

1. 摘要

  • 逼真的传感器仿真解决剩余corner case
  • 3个工作
    • 1.实例意识。作者的仿真器用独立的网络分别仿真前台实例和后台环境,以便可以分别控制实例的静态(例如大小和外观)和动态(例如轨迹)属性
    • 2.模块化。作者的仿真器允许在不同的现代NeRF相关主干、采样策略、输入模式等之间灵活切换。希望这种模块化设计能促进给予NeRF的自动驾驶方针的学术进步和工业部署
    • 3.现实。作者的仿真器设置了新的最先进的照片现实主义的结果给出了最佳的模块选择。

2. Nerf最新进展

2.1. Nerf:将场景表达为3D空间的场

  • https://arxiv.org/pdf/2003.08934.pdf

  • 基本思想:3维空间,3D点都向外发射,并且具有一定的体积,可以阻挡其他方向的射线传播

  • 将位置和观察角度 ( x , y , z , θ , ϕ ) (x,y,z,\theta,\phi) (x,y,z,θ,ϕ)转化为 ( R , G , B , δ ) (R,G,B,\delta) (R,G,B,δ),RGB和反射率

  • 渲染出每个点的Color(RGB)+Density(阻挡能力),用渲染的颜色和原图颜色做loss

  • Blend weights:通过前面所有不透明度的积分得到当前点的积分

  • 体渲染:将所有点从近到远排列到一块,利用Blend weights和积分得到当前点的渲染颜色

  • 真实实现Nerf不用积分,计算量大

  • Nerf缺点:

    • 训练慢:需要2~3天,渲染图要几十秒
    • 渲染结果几何比较差
    • 基于静态场景的假设,不适用动态场景(本文主要解决的问题)

2.2. 续改进论文:

2. 主要内容

本文主要解决"基于静态场景的假设,不适用动态场景"的问题

2.1. 之前的工作

2.2. 本文内容:

  • 之前工作在刚体运动的场景比较复杂了,因为通过刚体运动就可以建立

2.3. 其他内容

  • 4D标注:
    • object pose不准,会导致渲染的时候出现汽车跳动的问题
      • 原因:现有的3D目标检测标注不准
        • 1.单目标注的不具有尺度度量(真实世界尺度)
        • 2.不用来做重建,不考虑帧间的一致性
    • 通过mask(车)做仿真
  • 行人和车辆的交换:现在还没考虑分刚体的行人仿真
  • 没有考虑shadow和weather的变化
  • 物理仿真(物理方程)
  • KITTI 10G显存就行了
  • 在waymo数据上做的:标注框不是很准,但是直行还行,转弯不行
    • nuscenes数据集:camera pose /object pose都不是很准,试验很多次效果不好
相关推荐
ARM+FPGA+AI工业主板定制专家1 小时前
【JETSON+FPGA+GMSL】实测分享 | 如何实现激光雷达与摄像头高精度时间同步?
人工智能·数码相机·机器学习·fpga开发·机器人·自动驾驶
ARM+FPGA+AI工业主板定制专家2 小时前
Jetson AGX Orin+GMSL+AI视觉开发套件,支持自动驾驶,机器人,工业视觉等应用
人工智能·机器学习·fpga开发·机器人·自动驾驶
Altair澳汰尔5 小时前
新闻速递丨Altair 与 Gordon Murray Group 携手开发创新超级轻量化平台
汽车·仿真·cae·hyperworks·汽车轻量化·c123
ARM+FPGA+AI工业主板定制专家5 小时前
【JETSON+FPGA+GMSL+AI】自动驾驶与移动机器人的摄像头如何实现高精度时间同步?
网络·人工智能·机器学习·fpga开发·cnn·自动驾驶
ARM+FPGA+AI工业主板定制专家6 小时前
基于JETSON+FPGA+GMSL相机 vs 传统工业相机:高动态范围与低延迟如何重塑机器感知视觉?
人工智能·数码相机·机器学习·自动驾驶
地平线开发者8 小时前
大模型 | VLM 初识及在自动驾驶场景中的应用
算法·自动驾驶
lihongli00010 小时前
CAN、ROS数据录制与rqt图形化显示
自动驾驶·ros·激光雷达
ARM+FPGA+AI工业主板定制专家1 天前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
BullSmall2 天前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
地平线开发者2 天前
手撕大模型 | MQA 和 GQA 原理解析
自动驾驶