模型训练环境相关(CUDA、PyTorch)

模型训练环境相关(CUDA、PyTorch)

  • [1. 查看当前 GPU 所能支持的最高版本的 CUDA](#1. 查看当前 GPU 所能支持的最高版本的 CUDA)
  • [2. 如何判断是否安装了 CUDA](#2. 如何判断是否安装了 CUDA)
  • [3. 安装 PyTorch](#3. 安装 PyTorch)
    • [3.1 创建虚拟环境](#3.1 创建虚拟环境)
    • [3.2 激活并进入虚拟环境](#3.2 激活并进入虚拟环境)
    • [3.3 安装 PyTorch](#3.3 安装 PyTorch)

1. 查看当前 GPU 所能支持的最高版本的 CUDA

  1. 打开 NVIDIA 控制面板;
  2. 点击【帮助】菜单,并选择【系统信息】选项;
  3. 选择【组件】,并在3D设置模块,找到NVCUDA.DLL,在该行, 可以看到该NVCUDA的版本;
  4. 下载显卡驱动 NVIDIA
  5. 安装 CUDA Toolkit Archive
  6. 安装 cudnn

2. 如何判断是否安装了 CUDA

powershell 复制代码
	nvcc -V

如果已经安装了 CUDA,则会显示 CUDA 版本信息;如果没有安装,则会出现「command not found」的错误信息。

3. 安装 PyTorch

使用 Anaconda

3.1 创建虚拟环境

打开 Anaconda Prompt

  • 在 anaconda 中添加镜像源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

conda config --set show_channel_urls yes

  • 创建所需虚拟环境:
shell 复制代码
conda create -n your_env_name python==3.10.0

3.2 激活并进入虚拟环境

  1. 在上一步的基础上,对创建完成的虚拟环境进行激活:conda activate my_env
  2. 若要退出当前的虚拟环境,执行以下指令即可:conda deactivate

3.3 安装 PyTorch

  1. 进入 PyTorch 官网,选择相关参数,获取PyTorch安装指令,并在 Anaconda Prompt 终端中执行;
    注意:安装的时候要将命令后的 -c pytorch 后面的内容删除,从国内源进行下载,速度快一些。

  2. 安装 PyTorch,至此基础环境已经部署完成;

  3. 验证 PyTorch 是否安装成功:

    python 复制代码
    python 
    import torch 
    torch.cuda.is_available() 
相关推荐
AKAMAI1 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元3 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元3 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心3 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术3 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing4 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_4 小时前
NCCL的用户缓冲区注册
人工智能
sans_4 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算4 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc
虫无涯4 小时前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm