算法-动态规划-最长递增子序列

算法-动态规划-最长递增子序列

1 题目概述

1.1 题目出处

https://leetcode.cn/problems/longest-increasing-subsequence/

1.2 题目描述

2 动态规划

2.1 思路

思考如果以dp[i]表示i位置的字符的最长递增子序列长度,那么很难找到dp[i]和dp[i-1]的关系,因为dp[i]没有携带是否取当前位置字符的信息。

那么我们以dp[i]表示以位置i结尾的字符的最长递增子序列长度,那么就可以找到dp[i]和dp[i-1]、dp[i-2] ...的关系,只要nums[j] < nums[i],则j 和 i就能组成递增子序列 ,我们从i-1比较到0,取dp[j]最大值+1作为dp[i]的值即可。

2.2 代码

java 复制代码
class Solution {
    int result = 0;
    public int lengthOfLIS(int[] nums) {
        if (nums.length == 0) {
            return result;
        }
        // 表示以指定位置结尾的最长递增子序列
        int[] dp = new int[nums.length];
        for (int i = 0; i < dp.length; i++) {
            dp[i] = 1;
            for (int j = i - 1; j >= 0; j--) {
                if (nums[j] < nums[i]) {
                    dp[i] = Math.max(dp[j] + 1, dp[i]);
                }
            }
            result = Math.max(result, dp[i]);
        }
        return result;
    }

}

2.3 时间复杂度

O(N^2)

2.4 空间复杂度

O(N)

3 二分查找

3.1 思路

3.2 代码

java 复制代码
class Solution {
    public int lengthOfLIS(int[] nums) {
        List<Integer> resultList = new ArrayList<>();
        resultList.add(nums[0]);
        for (int i = 1; i < nums.length; i++) {
            int lastIndex = resultList.size() - 1;
            if (nums[i] < resultList.get(lastIndex)) {
                // 比当前子序列尾元素还小,需要替换放入合适位置
                // 规则是替换掉resultList中最小的比当前元素nums[i]大的元素
                int m = 0, n = lastIndex;
                while (m < n) {
                    int mid = (m + n) / 2;
                    if (resultList.get(mid) < nums[i]) {
                        m = mid + 1;
                    } else if (resultList.get(mid) > nums[i]) {
                        n = mid - 1;
                    } else {
                        m = mid;
                        break;
                    }
                }
                if (nums[i] <= resultList.get(m)) {
                    resultList.set(m, nums[i]);
                } else {
                    resultList.set(m + 1, nums[i]);
                } 
                
            } else if (nums[i] > resultList.get(lastIndex)) {
                // 直接加入上升序列
                resultList.add(nums[i]);
            }
        }
        return resultList.size();
    }
}

3.3 时间复杂度

O(NlogN)

3.4 空间复杂度

O(K) K为最长子序列长度

参考文档

相关推荐
智者知已应修善业5 小时前
【求中位数】2024-1-23
c语言·c++·经验分享·笔记·算法
地平线开发者6 小时前
PTQ 量化数值范围与优化
算法·自动驾驶
sali-tec6 小时前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明6 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
罗西的思考7 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
qq_433554549 小时前
C++数位DP
c++·算法·图论
AshinGau10 小时前
Softmax 与 交叉熵损失
神经网络·算法
似水এ᭄往昔10 小时前
【C++】--AVL树的认识和实现
开发语言·数据结构·c++·算法·stl
栀秋66610 小时前
“无重复字符的最长子串”:从O(n²)哈希优化到滑动窗口封神,再到DP降维打击!
前端·javascript·算法
xhxxx10 小时前
不用 Set,只用两个布尔值:如何用标志位将矩阵置零的空间复杂度压到 O(1)
javascript·算法·面试