算法-动态规划-最长递增子序列

算法-动态规划-最长递增子序列

1 题目概述

1.1 题目出处

https://leetcode.cn/problems/longest-increasing-subsequence/

1.2 题目描述

2 动态规划

2.1 思路

思考如果以dp[i]表示i位置的字符的最长递增子序列长度,那么很难找到dp[i]和dp[i-1]的关系,因为dp[i]没有携带是否取当前位置字符的信息。

那么我们以dp[i]表示以位置i结尾的字符的最长递增子序列长度,那么就可以找到dp[i]和dp[i-1]、dp[i-2] ...的关系,只要nums[j] < nums[i],则j 和 i就能组成递增子序列 ,我们从i-1比较到0,取dp[j]最大值+1作为dp[i]的值即可。

2.2 代码

java 复制代码
class Solution {
    int result = 0;
    public int lengthOfLIS(int[] nums) {
        if (nums.length == 0) {
            return result;
        }
        // 表示以指定位置结尾的最长递增子序列
        int[] dp = new int[nums.length];
        for (int i = 0; i < dp.length; i++) {
            dp[i] = 1;
            for (int j = i - 1; j >= 0; j--) {
                if (nums[j] < nums[i]) {
                    dp[i] = Math.max(dp[j] + 1, dp[i]);
                }
            }
            result = Math.max(result, dp[i]);
        }
        return result;
    }

}

2.3 时间复杂度

O(N^2)

2.4 空间复杂度

O(N)

3 二分查找

3.1 思路

3.2 代码

java 复制代码
class Solution {
    public int lengthOfLIS(int[] nums) {
        List<Integer> resultList = new ArrayList<>();
        resultList.add(nums[0]);
        for (int i = 1; i < nums.length; i++) {
            int lastIndex = resultList.size() - 1;
            if (nums[i] < resultList.get(lastIndex)) {
                // 比当前子序列尾元素还小,需要替换放入合适位置
                // 规则是替换掉resultList中最小的比当前元素nums[i]大的元素
                int m = 0, n = lastIndex;
                while (m < n) {
                    int mid = (m + n) / 2;
                    if (resultList.get(mid) < nums[i]) {
                        m = mid + 1;
                    } else if (resultList.get(mid) > nums[i]) {
                        n = mid - 1;
                    } else {
                        m = mid;
                        break;
                    }
                }
                if (nums[i] <= resultList.get(m)) {
                    resultList.set(m, nums[i]);
                } else {
                    resultList.set(m + 1, nums[i]);
                } 
                
            } else if (nums[i] > resultList.get(lastIndex)) {
                // 直接加入上升序列
                resultList.add(nums[i]);
            }
        }
        return resultList.size();
    }
}

3.3 时间复杂度

O(NlogN)

3.4 空间复杂度

O(K) K为最长子序列长度

参考文档

相关推荐
一只码代码的章鱼28 分钟前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
小小小小关同学28 分钟前
【JVM】垃圾收集器详解
java·jvm·算法
圆圆滚滚小企鹅。34 分钟前
刷题笔记 贪心算法-1 贪心算法理论基础
笔记·算法·leetcode·贪心算法
Kacey Huang44 分钟前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
eguid_11 小时前
JavaScript图像处理,常用图像边缘检测算法简单介绍说明
javascript·图像处理·算法·计算机视觉
带多刺的玫瑰1 小时前
Leecode刷题C语言之收集所有金币可获得的最大积分
算法·深度优先
LabVIEW开发2 小时前
PID控制的优势与LabVIEW应用
算法·labview
涅槃寂雨2 小时前
C语言小任务——寻找水仙花数
c语言·数据结构·算法
就爱学编程2 小时前
从C语言看数据结构和算法:复杂度决定性能
c语言·数据结构·算法
刀客1232 小时前
数据结构与算法再探(六)动态规划
算法·动态规划