基于可解释性特征矩阵与稀疏采样全局特征组合的人体行为识别

论文还未发表,不细说,欢迎讨论。

Title: A New Solution to Skeleton-Based Human Action Recognition via the combination usage of explainable feature extraction and sparse sampling global features.

Abstract: With the development of deep learning technology, the vision-based applications of human action recognition (HAR) have received great progress. Many methods followed the idea of data-driven and tried their best to include more and more motion features in consideration for higher accuracy purposes. However, the thought of "the more features adopted, the higher accuracy will be"will inevitably result in the ever-increasing requirement of computing power and decreasing efficiency. In this paper, in order to effectively recognize human actions with only a few of the most sensitive motion features, the explainable features, the combining usage of local and global features, and a multi-scale shallow network are proposed. First, the explainable features let a deep neural network be finetuned in the input stage, and an action represented by these features are easier to find priori theory of physics and kinematics for data augmentation purpose. Second, although criticism of the global features never stops, it is universally acknowledged that the context information included in the global feature is essential to HAR. The proposed SMHI---motion history image generated in a sparse sampling way, can not only reduce the time-cost, but also effectively reflect the motion tendency. It is suggested to be a useful complementary of local features. Third, full experiments were conducted to find out the best feature combination for HAR. The results have proved that feature selection is more important than computing all features. The proposed method is evaluated on three datasets. The experiment results proved the effectiveness and efficiency of our proposed method. Moreover, the only usage of human skeleton motion data provides privacy assurances to users.

现在大多数方法有两个问题:1. 将尽可能多的特征纳入到输入端,虽然可以增强准确率,但增加了计算负担,而且模型越来越臃肿;2. 全局特征一直处于被抛弃的境地,而其包含的上下文信息却有非常重要。针对这两点,我尝试用物理学和运动学中的先验知识提取人体行为动作特征,使其具备可解释性,然后对其优化和数据增强。并进一步找到其最有效的组合。同时,通过稀疏采样的方式构建MHI,即:只提取其运动趋势特征。使之作为local feature的有效补充。实验结果良好,特别是在效率方面有质的提升。本文的主要创新点在于跳出了主流"数据驱动"特征越多越好的传统思路,通过实验证明:特征选择远比计算所有特征更为重要。

相关推荐
麻雀无能为力40 分钟前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人1 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法1 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾1 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor
东临碣石821 小时前
【AI论文】数学推理能否提升大型语言模型(LLM)的通用能力?——探究大型语言模型推理能力的可迁移性
人工智能·语言模型·自然语言处理
IT古董1 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(3)决策树回归模型(Decision Tree Regression)
神经网络·机器学习·回归
24毕业生从零开始学ai1 小时前
长短期记忆网络(LSTM):让神经网络拥有 “持久记忆力” 的神奇魔法
rnn·神经网络·lstm
未来智慧谷2 小时前
微软医疗AI诊断系统发布 多智能体协作实现疑难病例分析
人工智能·microsoft·医疗ai
野生技术架构师2 小时前
简述MCP的原理-AI时代的USB接口
人工智能·microsoft
Allen_LVyingbo2 小时前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗