基于可解释性特征矩阵与稀疏采样全局特征组合的人体行为识别

论文还未发表,不细说,欢迎讨论。

Title: A New Solution to Skeleton-Based Human Action Recognition via the combination usage of explainable feature extraction and sparse sampling global features.

Abstract: With the development of deep learning technology, the vision-based applications of human action recognition (HAR) have received great progress. Many methods followed the idea of data-driven and tried their best to include more and more motion features in consideration for higher accuracy purposes. However, the thought of "the more features adopted, the higher accuracy will be"will inevitably result in the ever-increasing requirement of computing power and decreasing efficiency. In this paper, in order to effectively recognize human actions with only a few of the most sensitive motion features, the explainable features, the combining usage of local and global features, and a multi-scale shallow network are proposed. First, the explainable features let a deep neural network be finetuned in the input stage, and an action represented by these features are easier to find priori theory of physics and kinematics for data augmentation purpose. Second, although criticism of the global features never stops, it is universally acknowledged that the context information included in the global feature is essential to HAR. The proposed SMHI---motion history image generated in a sparse sampling way, can not only reduce the time-cost, but also effectively reflect the motion tendency. It is suggested to be a useful complementary of local features. Third, full experiments were conducted to find out the best feature combination for HAR. The results have proved that feature selection is more important than computing all features. The proposed method is evaluated on three datasets. The experiment results proved the effectiveness and efficiency of our proposed method. Moreover, the only usage of human skeleton motion data provides privacy assurances to users.

现在大多数方法有两个问题:1. 将尽可能多的特征纳入到输入端,虽然可以增强准确率,但增加了计算负担,而且模型越来越臃肿;2. 全局特征一直处于被抛弃的境地,而其包含的上下文信息却有非常重要。针对这两点,我尝试用物理学和运动学中的先验知识提取人体行为动作特征,使其具备可解释性,然后对其优化和数据增强。并进一步找到其最有效的组合。同时,通过稀疏采样的方式构建MHI,即:只提取其运动趋势特征。使之作为local feature的有效补充。实验结果良好,特别是在效率方面有质的提升。本文的主要创新点在于跳出了主流"数据驱动"特征越多越好的传统思路,通过实验证明:特征选择远比计算所有特征更为重要。

相关推荐
king of code porter20 分钟前
深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(3)
人工智能·深度学习·剪枝
有Li21 分钟前
分割任意组织:用于医学图像分割的单样本参考引导免训练自动点提示方法|文献速递-深度学习医疗AI最新文献
论文阅读·深度学习·计算机视觉
追风哥哥22 分钟前
Transformer、RNN (循环神经网络) 和 CNN (卷积神经网络)的区别
rnn·深度学习·cnn·卷积神经网络·transformer
DUTBenjamin23 分钟前
深度学习5——循环神经网络
人工智能·rnn·深度学习
struggle202525 分钟前
tvm开源程序是适用于 CPU、GPU 和专用加速器的开放式深度学习编译器堆栈
人工智能·python·深度学习
摘取一颗天上星️25 分钟前
LSTM梯度推导与梯度消失机制解析
人工智能·rnn·lstm
凡人的AI工具箱28 分钟前
PyTorch深度学习框架60天进阶学习计划-第57天:因果推理模型(二)- 高级算法与深度学习融合
人工智能·pytorch·深度学习·学习·mcp·a2a
DFminer32 分钟前
【仿生机器人】建模—— 图生3D 的几个办法
人工智能·安全·机器人
算家云35 分钟前
“液态玻璃”难解苹果AI焦虑:WWDC25背后的信任危机
人工智能·算力·算家云·租算力,到算家云·wwdc25·苹果ai·ios 26
琼方1 小时前
“十五五”时期智慧城市赋能全国一体化数据市场建设:战略路径与政策建议[ 注:本建议基于公开政策文件与行业实践研究,数据引用截至2025年6月11日。]
大数据·人工智能·智慧城市