基于可解释性特征矩阵与稀疏采样全局特征组合的人体行为识别

论文还未发表,不细说,欢迎讨论。

Title: A New Solution to Skeleton-Based Human Action Recognition via the combination usage of explainable feature extraction and sparse sampling global features.

Abstract: With the development of deep learning technology, the vision-based applications of human action recognition (HAR) have received great progress. Many methods followed the idea of data-driven and tried their best to include more and more motion features in consideration for higher accuracy purposes. However, the thought of "the more features adopted, the higher accuracy will be"will inevitably result in the ever-increasing requirement of computing power and decreasing efficiency. In this paper, in order to effectively recognize human actions with only a few of the most sensitive motion features, the explainable features, the combining usage of local and global features, and a multi-scale shallow network are proposed. First, the explainable features let a deep neural network be finetuned in the input stage, and an action represented by these features are easier to find priori theory of physics and kinematics for data augmentation purpose. Second, although criticism of the global features never stops, it is universally acknowledged that the context information included in the global feature is essential to HAR. The proposed SMHI---motion history image generated in a sparse sampling way, can not only reduce the time-cost, but also effectively reflect the motion tendency. It is suggested to be a useful complementary of local features. Third, full experiments were conducted to find out the best feature combination for HAR. The results have proved that feature selection is more important than computing all features. The proposed method is evaluated on three datasets. The experiment results proved the effectiveness and efficiency of our proposed method. Moreover, the only usage of human skeleton motion data provides privacy assurances to users.

现在大多数方法有两个问题:1. 将尽可能多的特征纳入到输入端,虽然可以增强准确率,但增加了计算负担,而且模型越来越臃肿;2. 全局特征一直处于被抛弃的境地,而其包含的上下文信息却有非常重要。针对这两点,我尝试用物理学和运动学中的先验知识提取人体行为动作特征,使其具备可解释性,然后对其优化和数据增强。并进一步找到其最有效的组合。同时,通过稀疏采样的方式构建MHI,即:只提取其运动趋势特征。使之作为local feature的有效补充。实验结果良好,特别是在效率方面有质的提升。本文的主要创新点在于跳出了主流"数据驱动"特征越多越好的传统思路,通过实验证明:特征选择远比计算所有特征更为重要。

相关推荐
飞Link2 分钟前
PyTorch 核心 API 完全手册:从基础张量到模型部署
人工智能·pytorch·python·深度学习·机器学习
AI时代原住民2 分钟前
AI时代创业指南——指数型组织2.0
人工智能
快降重026 分钟前
医学实验报告改写|实测:在数据精准的雷区中,安全剥离AI痕迹
人工智能·自然语言处理·论文降重·ai降重·降ai率·快降重
haing20199 分钟前
机器人带六维力传感器进行导纳控制恒力打磨原理介绍
人工智能·机器人
小王努力学编程11 分钟前
LangChain——AI应用开发框架
服务器·c++·人工智能·分布式·rpc·langchain·brpc
翱翔的苍鹰13 分钟前
完整的“RNN + jieba 中文情感分析”项目的Gradio Web 演示的简单项目
前端·人工智能·rnn
java1234_小锋14 分钟前
【AI大模型面试题】假设你需要为一个资源有限的场景(如单张消费级GPU)部署一个百亿参数的大模型,你会考虑哪些技术来使其可行且高效?
人工智能
yun685399218 分钟前
ai相关技术了解之n8n简单练习及理解
人工智能·n8n
Python毕设指南25 分钟前
基于深度学习的旅游推荐系统
python·深度学习·数据分析·django·毕业设计·课程设计
Python_Study202533 分钟前
工程材料企业如何通过智慧获客软件破解市场困局:方法论、架构与实践
大数据·网络·数据结构·人工智能·架构