李沐深度学习记录3:11模型选择、欠拟合和过拟合

通过多项式拟合探索欠拟合与过拟合

python 复制代码
import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

#生成数据集
max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))#生成均值为0,标准差为1的正态分布概率密度随机数
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)  # gamma(n)=(n-1)!
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)  #加上噪声

#分别对应常数系数、x值、x的次方再除以阶乘、算得的y值
true_w,features,poly_features,labels=[torch.tensor(x,dtype=torch.float32) for x in [true_w,features,poly_features,labels]]
true_w[:2],features[:2],poly_features[:2,:],labels[:2]
python 复制代码
#实现函数评估模型损失
def evaluate_loss(net,data_iter,loss):
    '''评估给定数据集上模型的损失'''
    metric=d2l.Accumulator(2) #记录 损失的总和,样本数量
    for X,y in data_iter:
        out=net(X)
        y=y.reshape(out.shape)
        l=loss(out,y)
        metric.add(l.sum(),l.numel())
    return metric[0]/metric[1]

#from torch.utils import data

#定义训练函数
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    #print(train_labels.shape)   [100]
    #print(train_labels.shape[0])   100
    #print(batch_size)   10
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    #等价于以下两行代码
#     train_dataset=data.TensorDataset(train_features,train_labels.reshape(-1,1))
#     train_iter=data.DataLoader(train_dataset,batch_size,shuffle=True)
    
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer) #训练模型一个迭代周期
        if epoch == 0 or (epoch + 1) % 20 == 0:   #每20个epoch训练迭代周期,评估一次模型损失(包括训练集和测试集),画一次数据点
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),  #评估训练数据集上模型损失
                                     evaluate_loss(net, test_iter, loss)))  #评估测试数据集上模型损失
    print('weight:', net[0].weight.data.numpy())  #输出最终模型的参数权重
python 复制代码
#使用三阶多项式拟合,与数据生成函数的阶数相同(正常)
# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
python 复制代码
#使用线性函数拟合非线性函数(这里是三阶多项式函数),线性模型很容易欠拟合
# 从多项式特征中选择前2个维度,即1和x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
python 复制代码
#使用一个阶数过高的复杂多项式模型来训练会造成过拟合。在这种情况下,没有足够的数据用于学到高阶系数应该具有接近于零的值。 因此,这个过于复杂的模型会轻易受到训练数据中噪声的影响。 虽然训练损失可以有效地降低,但测试损失仍然很高。 
# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)
相关推荐
阿坡RPA5 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049935 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心5 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI7 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c8 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2058 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清8 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh9 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员9 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物9 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技