HDLBits-Fsm3onehot

The following is the state transition table for a Moore state machine with one input, one output, and four states. Use the following one-hot state encoding: A=4'b0001, B=4'b0010, C=4'b0100, D=4'b1000.

Derive state transition and output logic equations by inspection assuming a one-hot encoding. Implement only the state transition logic and output logic (the combinational logic portion) for this state machine. (The testbench will test with non-one hot inputs to make sure you're not trying to do something more complicated).

| State | Next state || Output |

State in=0 in=1 Output
A A B 0
B C B 0
C A D 0
D C B 1
What does "derive equations by inspection" mean?

One-hot state machine encoding guarantees that exactly one state bit is 1. This means that it is possible to determine whether the state machine is in a particular state by examining only one state bit, not all state bits. This leads to simple logic equations for the state transitions by examining the incoming edges for each state in the state transition diagram.

For example, in the above state machine, how can the state machine can reach state A? It must use one of the two incoming edges: "Currently in state A and in=0" or "Currently in state C and in = 0". Due to the one-hot encoding, the logic equation to test for "currently in state A" is simply the state bit for state A. This leads to the final logic equation for the next state of state bit A: next_state[0] = state[0]&(~in) | state[2]&(~in). The one-hot encoding guarantees that at most one clause (product term) will be "active" at a time, so the clauses can just be ORed together.

When an exercise asks for state transition equations "by inspection", use this particular method. The judge will test with non-one-hot inputs to ensure your logic equations follow this method, rather that doing something else (such as resetting the FSM) for illegal (non-one-hot) combinations of the state bits.

Although knowing this algorithm isn't necessary for RTL-level design (the logic synthesizer handles this), it is illustrative of why one-hot FSMs often have simpler logic (at the expense of more state bit storage), and this topic frequently shows up on exams in digital logic courses.

Module Declaration

复制代码
module top_module(
    input in,
    input [3:0] state,
    output [3:0] next_state,
    output out); 

独热编码:使用每一位表示一个状态, 例如 有A、B、C、D四个状态,则采用state【4:0】

A为4'b0001 B为4'b0010 C为4'b0100 D为4'b1000

则可以设置 parameter A = 0,

B = 1,

C = 2,

D = 3

通过state[A]是否为1就可以判断当前状态是否为A,同理通过state【B】是否为1就可以判断当前状态是否为B。

以下为该题代码:

cpp 复制代码
module top_module(
    input in,
    input [3:0] state,
    output [3:0] next_state,
    output out); 

    parameter A = 0, // 独热编码第0位为1表示A
              B = 1, // 独热编码第0位为1表示B
              C=  2, 
              D=  3;

    // State transition logic: Derive an equation for each state flip-flop.
    assign next_state[A] = state[0]&(~in) | state[2]&(~in);
    assign next_state[B] = state[0]&in | state[1]&in | state[3]∈
    assign next_state[C] = state[1]&(~in) | state[3]&(~in);
    assign next_state[D] = state[2]∈

    // Output logic: 
    assign out = state[D];

endmodule
相关推荐
KOAN凯擎小妹12 小时前
晶振信号质量:上升下降时间与占空比
单片机·嵌入式硬件·fpga开发·信息与通信
cmc102812 小时前
148.PCIE参考时钟无法绑定
fpga开发
我爱C编程16 小时前
【硬件片内测试】基于FPGA的完整BPSK链路测试,含频偏锁定,帧同步,定时点,Viterbi译码,信道,误码统计
fpga开发·定时·bpsk·帧同步·卷积编码·维特比译码·频偏估计
FPGA_小田老师16 小时前
FPGA基础知识(十一):时序约束参数确定--从迷茫到精通
fpga开发·时序约束·建立时间·保持时间·约束参数计算
FPGA_小田老师16 小时前
FPGA基础知识(十二):详解跨时钟域约束
fpga开发·时序约束·跨时钟域·约束完整性
第二层皮-合肥1 天前
基于FPGA的雷达信号处理设计工具包分享
fpga开发·信号处理
美好的事情总会发生1 天前
FPGA的LVDS接口电压
嵌入式硬件·fpga开发·硬件工程·智能硬件
卡奥斯开源社区官方2 天前
量子计算“平价革命”深度解析:AMD破局FPGA方案+中国千比特云服务,技术拐点已至?
fpga开发·量子计算
贝塔实验室2 天前
译码器的结构
驱动开发·算法·网络安全·fpga开发·硬件工程·信息与通信·信号处理
bnsarocket2 天前
Verilog和FPGA的自学笔记9——呼吸灯
笔记·fpga开发·verilog·自学·硬件编程