HDLBits-Fsm3onehot

The following is the state transition table for a Moore state machine with one input, one output, and four states. Use the following one-hot state encoding: A=4'b0001, B=4'b0010, C=4'b0100, D=4'b1000.

Derive state transition and output logic equations by inspection assuming a one-hot encoding. Implement only the state transition logic and output logic (the combinational logic portion) for this state machine. (The testbench will test with non-one hot inputs to make sure you're not trying to do something more complicated).

| State | Next state || Output |

State in=0 in=1 Output
A A B 0
B C B 0
C A D 0
D C B 1
What does "derive equations by inspection" mean?

One-hot state machine encoding guarantees that exactly one state bit is 1. This means that it is possible to determine whether the state machine is in a particular state by examining only one state bit, not all state bits. This leads to simple logic equations for the state transitions by examining the incoming edges for each state in the state transition diagram.

For example, in the above state machine, how can the state machine can reach state A? It must use one of the two incoming edges: "Currently in state A and in=0" or "Currently in state C and in = 0". Due to the one-hot encoding, the logic equation to test for "currently in state A" is simply the state bit for state A. This leads to the final logic equation for the next state of state bit A: next_state[0] = state[0]&(~in) | state[2]&(~in). The one-hot encoding guarantees that at most one clause (product term) will be "active" at a time, so the clauses can just be ORed together.

When an exercise asks for state transition equations "by inspection", use this particular method. The judge will test with non-one-hot inputs to ensure your logic equations follow this method, rather that doing something else (such as resetting the FSM) for illegal (non-one-hot) combinations of the state bits.

Although knowing this algorithm isn't necessary for RTL-level design (the logic synthesizer handles this), it is illustrative of why one-hot FSMs often have simpler logic (at the expense of more state bit storage), and this topic frequently shows up on exams in digital logic courses.

Module Declaration

复制代码
module top_module(
    input in,
    input [3:0] state,
    output [3:0] next_state,
    output out); 

独热编码:使用每一位表示一个状态, 例如 有A、B、C、D四个状态,则采用state【4:0】

A为4'b0001 B为4'b0010 C为4'b0100 D为4'b1000

则可以设置 parameter A = 0,

B = 1,

C = 2,

D = 3

通过state[A]是否为1就可以判断当前状态是否为A,同理通过state【B】是否为1就可以判断当前状态是否为B。

以下为该题代码:

cpp 复制代码
module top_module(
    input in,
    input [3:0] state,
    output [3:0] next_state,
    output out); 

    parameter A = 0, // 独热编码第0位为1表示A
              B = 1, // 独热编码第0位为1表示B
              C=  2, 
              D=  3;

    // State transition logic: Derive an equation for each state flip-flop.
    assign next_state[A] = state[0]&(~in) | state[2]&(~in);
    assign next_state[B] = state[0]&in | state[1]&in | state[3]∈
    assign next_state[C] = state[1]&(~in) | state[3]&(~in);
    assign next_state[D] = state[2]∈

    // Output logic: 
    assign out = state[D];

endmodule
相关推荐
HIZYUAN5 小时前
AGM FPGA如何配置上拉或者下拉电阻
fpga开发
∑狸猫不是猫5 小时前
(13)CT137A- 简易音乐盒设计
fpga开发
ThreeYear_s11 小时前
基于FPGA 的4位密码锁 矩阵键盘 数码管显示 报警仿真
fpga开发·矩阵·计算机外设
Anin蓝天(北京太速科技-陈)17 小时前
252-8路SATAII 6U VPX高速存储模块
fpga开发
如何学会学习?19 小时前
2. FPGA基础了解--全局网络
fpga开发
Anin蓝天(北京太速科技-陈)20 小时前
271-基于XC7V690T的12路光纤PCIe接口卡
嵌入式硬件·fpga开发
碎碎思1 天前
FPGA新闻速览-WiMi开发基于FPGA的数字量子计算机验证技术
fpga开发·量子计算
hi941 天前
Vivado - 远程调试 + 远程综合实现 + vmWare网络配置 + NFS 文件共享 + 使用 VIO 核
嵌入式硬件·fpga开发·vivado 远程开发·vmware网络配置
乘风~&2 天前
基于发FPGA 练手智能小车顶层文件
fpga开发
_Hello_Panda_2 天前
高云GW5AT系列FPGA在接口扩展和桥接领域的应用方向探讨分享
fpga开发·高云·gw5at