PyTorch入门之【CNN】

参考:https://www.bilibili.com/video/BV1114y1d79e/?spm_id_from=333.999.0.0\&vd_source=98d31d5c9db8c0021988f2c2c25a9620

书接上回的MLP故本章就不详细解释了

目录

train

python 复制代码
import torch
from torchvision.transforms import ToTensor
from torchvision import datasets
import torch.nn as nn

# load MNIST dataset
training_data = datasets.MNIST(
    root='../02_dataset/data',
    train=True,
    download=True,
    transform=ToTensor()
)

train_data_loader = torch.utils.data.DataLoader(training_data, batch_size=64, shuffle=True)

# define a CNN model
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv_1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3, stride=1),
            nn.BatchNorm2d(32),
            nn.ReLU()
        )
        self.conv_2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3, stride=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        self.maxpool = nn.MaxPool2d(2)
        self.flatten = nn.Flatten()
        self.fc_1 = nn.Sequential(
            nn.Linear(9216, 128),
            nn.BatchNorm1d(128),
            nn.ReLU()
        )
        self.fc_2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv_1(x)
        x = self.conv_2(x)
        x = self.maxpool(x)
        x = self.flatten(x)
        x = self.fc_1(x)
        logits = self.fc_2(x)
        return logits

# create a CNN model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cnn = CNN().to(device)
optimizer = torch.optim.Adam(cnn.parameters(), lr=1e-3)
loss_fn = nn.CrossEntropyLoss()

# train the model
num_epochs = 20

for epoch in range(num_epochs):
    print(f'Epoch {epoch+1}\n-------------------------------')
    for idx, (img, label) in enumerate(train_data_loader):
        size = len(train_data_loader.dataset)
        img, label = img.to(device), label.to(device)

        # compute prediction error
        pred = cnn(img)
        loss = loss_fn(pred, label)

        # backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if idx % 400 == 0:
            loss, current = loss.item(), idx*len(img)
            print(f'loss: {loss:>7f} [{current:>5d}/{size:>5d}]')

# save the model
torch.save(cnn.state_dict(), 'cnn.pth')
print('Saved PyTorch Model State to cnn.pth')

test

python 复制代码
import torch
from torchvision import datasets
from torchvision import transforms
from torchvision.transforms import ToTensor
from torchvision.datasets import ImageFolder
import torch.nn as nn

# load test data
test_data = datasets.MNIST(
    root='../02_dataset/data',
    train=False,
    download=True,
    transform=ToTensor()
)
test_data_loader = torch.utils.data.DataLoader(test_data, batch_size=64, shuffle=True)

transform = transforms.Compose([
    transforms.Grayscale(),
    transforms.RandomRotation(10),
    transforms.ToTensor()
])
my_mnist = ImageFolder(root='../02_dataset/my-mnist', transform=transform)
my_mnist_loader = torch.utils.data.DataLoader(my_mnist, batch_size=64, shuffle=True)

# define a CNN model
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv_1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3, stride=1),
            nn.BatchNorm2d(32),
            nn.ReLU()
        )
        self.conv_2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3, stride=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        self.maxpool = nn.MaxPool2d(2)
        self.flatten = nn.Flatten()
        self.fc_1 = nn.Sequential(
            nn.Linear(9216, 128),
            nn.BatchNorm1d(128),
            nn.ReLU()
        )
        self.fc_2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv_1(x)
        x = self.conv_2(x)
        x = self.maxpool(x)
        x = self.flatten(x)
        x = self.fc_1(x)
        logits = self.fc_2(x)
        return logits

# load the pretrained model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cnn = CNN()
cnn.load_state_dict(torch.load('cnn.pth', map_location=device))
cnn.eval().to(device)

# test the pretrained model on MNIST test data
size = len(test_data_loader.dataset)
correct = 0

with torch.no_grad():
    for img, label in test_data_loader:
        img, label = img.to(device), label.to(device)
        pred = cnn(img)

        correct += (pred.argmax(1) == label).type(torch.float).sum().item()

correct /= size
print(f'Accuracy on MNIST: {(100*correct):>0.1f}%')

# test the pretrained model on my MNIST test data
size = len(my_mnist_loader.dataset)
correct = 0

with torch.no_grad():
    for img, label in my_mnist_loader:
        img, label = img.to(device), label.to(device)
        pred = cnn(img)

        correct += (pred.argmax(1) == label).type(torch.float).sum().item()

correct /= size
print(f'Accuracy on my MNIST: {(100*correct):>0.1f}%')
相关推荐
摘星编程3 分钟前
RAG的下一站:检索增强生成如何重塑企业知识中枢?
android·人工智能
Aaron_9455 分钟前
BitNet:1-bit大语言模型的高效推理框架详解
人工智能·语言模型·自然语言处理
wenzhangli76 分钟前
「1+3 架构驱动」OoderAI 企业级解决方案:破解 AI 落地三大痛点,实现能力可控、交互智能与代码一致
人工智能
视觉&物联智能10 分钟前
【杂谈】-人工智能在风险管理中的应用:愿景与现实的差距
人工智能·网络安全·ai·aigc·agi
寻星探路15 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
知识分享小能手17 分钟前
Ubuntu入门学习教程,从入门到精通,Ubuntu 22.04中的人工智能—— 知识点详解 (25)
人工智能·学习·ubuntu
cyyt17 分钟前
深度学习周报(1.05~1.11)
人工智能·深度学习
Destiny_where21 分钟前
Claude VSCode插件版接入强大的GLM(无需登录注册claude code)
ide·人工智能·vscode·编辑器·claude code
小棠师姐25 分钟前
零基础入门卷积运算:计算机视觉的数学基础
人工智能·计算机视觉
RockHopper202528 分钟前
人类具身认知中作为“起点”的强约束机制是人工智能应用发展面临的最大挑战
人工智能·具身智能·具身认知