文章目录
对我个人而言,在开发过程中使用的比较多的就是双向链表了。
很多重要的代码优化都会使用到基于双向链表实现的数据机构。
比如我们常用的HashMap,我们知道Key其实是无序存放的,
而LinkedHashMap底层使用HashMap+双向链表的方式实现了对key的有序遍历。
双向链表的一些重要特点和优点:
双向遍历:
双向链表具有两个指针,一个指向前一个节点(前驱),一个指向后一个节点(后继)。这使得在链表中的任何位置都可以轻松地进行双向遍历,而不仅仅是单向遍历。
前向和后向操作: 可以在双向链表中执行前向和后向操作,这意味着可以轻松地在链表中的任何位置插入、删除或修改节点。
插入和删除效率高: 相对于单向链表,双向链表在某些情况下可以更高效地进行插入和删除操作,因为可以通过两个方向的指针更快地访问前后节点。
反向遍历: 在某些情况下,需要以相反的顺序遍历链表。双向链表使得反向遍历变得容易,无需重新构建链表。
实现双端队列: 双向链表还可以用于实现双端队列(Deque),这是一种允许在两端进行插入和删除操作的数据结构。
尽管双向链表提供了上述优点,但也需要额外的内存来存储每个节点的前向指针,这会增加内存开销。此外,由于维护前向指针和后向指针的关系,代码的实现可能相对复杂一些。
双向链表相对于单链表的区别在于,单链表只有一个指向下一个节点的指针域,而双向链表有两个。因此再管理指针上,需要更多的去注意。
不过原理都大差不差,只不过是再添加和删除一个节点的时候,需要记住去管理当前节点的前后指针域,使得其最终依旧能连起来。
因此我认为在学习双向链表的时候,比较推荐先再草纸上画出大概的思路。
比如再链表中间某个位置添加一个元素,那么应该遍历到当前元素前一个位置就停下,然后去创建新节点,并且将新节点的前后指针域指向当前节点和当前节点的下一个节点。
以此类推,删除也差不多。
所以,继续 show u my code。
C
c
#include <stdio.h>
#include <stdlib.h>
// 定义双向链表节点结构
struct Node {
int data;
struct Node* prev;
struct Node* next;
};
// 初始化双向链表
struct Node* initializeList() {
return NULL; // 返回一个空链表
}
// 在链表尾部插入节点
struct Node* insertAtEnd(struct Node* head, int data) {
//开辟space
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = data;
newNode->next = NULL;
if (head == NULL) {
newNode->prev = NULL;
return newNode; // 如果链表为空,新节点成为链表头
}
struct Node* current = head;
while (current->next != NULL) {
current = current->next; // 移动到链表末尾
}
current->next = newNode;
newNode->prev = current;
return head;
}
// 在链表头部插入节点
struct Node* insertAtBeginning(struct Node* head, int data) {
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = data;
newNode->next = head;
newNode->prev = NULL;
if (head != NULL) {
head->prev = newNode;
}
return newNode; // 新节点成为链表头
}
// 删除节点
struct Node* deleteNode(struct Node* head, int data) {
if (head == NULL) {
return NULL; // 空链表,无需删除
}
if (head->data == data) {
struct Node* temp = head;
head = head->next;
if (head != NULL) {
head->prev = NULL;
}
free(temp);
return head; // 删除链表头节点
}
struct Node* current = head;
while (current != NULL && current->data != data) {
current = current->next;
}
if (current != NULL) {
struct Node* prevNode = current->prev;
struct Node* nextNode = current->next;
if (prevNode != NULL) {
prevNode->next = nextNode;
}
if (nextNode != NULL) {
nextNode->prev = prevNode;
}
free(current); // 删除中间或末尾节点
}
return head;
}
// 查找节点
struct Node* searchNode(struct Node* head, int data) {
struct Node* current = head;
while (current != NULL) {
if (current->data == data) {
return current; // 找到匹配的节点
}
current = current->next;
}
return NULL; // 未找到匹配的节点
}
// 修改节点的数据
void modifyNode(struct Node* head, int oldData, int newData) {
struct Node* nodeToModify = searchNode(head, oldData);
if (nodeToModify != NULL) {
nodeToModify->data = newData; // 修改节点的数据
}
}
// 打印链表(正向)
void printListForward(struct Node* head) {
struct Node* current = head;
while (current != NULL) {
printf("%d -> ", current->data);
current = current->next;
}
printf("NULL\n");
}
// 打印链表(反向)
void printListBackward(struct Node* tail) {
struct Node* current = tail;
while (current != NULL) {
printf("%d -> ", current->data);
current = current->prev;
}
printf("NULL\n");
}
// 释放链表内存
void freeList(struct Node* head) {
struct Node* current = head;
while (current != NULL) {
struct Node* temp = current;
current = current->next;
free(temp);
}
}
int main() {
struct Node* list = initializeList();
int choice, data, oldData, newData;
while (1) {
printf("\nMenu:\n");
printf("1. Insert at the end\n");
printf("2. Insert at the beginning\n");
printf("3. Delete node\n");
printf("4. Search node\n");
printf("5. Modify node\n");
printf("6. Print list forward\n");
printf("7. Print list backward\n");
printf("8. Exit\n");
printf("Enter your choice: ");
scanf("%d", &choice);
switch (choice) {
case 1:
printf("Enter data to insert: ");
scanf("%d", &data);
list = insertAtEnd(list, data);
break;
case 2:
printf("Enter data to insert: ");
scanf("%d", &data);
list = insertAtBeginning(list, data);
break;
case 3:
printf("Enter data to delete: ");
scanf("%d", &data);
list = deleteNode(list, data);
break;
case 4:
printf("Enter data to search: ");
scanf("%d", &data);
if (searchNode(list, data) != NULL) {
printf("Found node with data %d\n", data);
} else {
printf("Node with data %d not found\n", data);
}
break;
case 5:
printf("Enter data to modify: ");
scanf("%d", &oldData);
printf("Enter new data: ");
scanf("%d", &newData);
modifyNode(list, oldData, newData);
break;
case 6:
printf("List (forward): ");
printListForward(list);
break;
case 7:
printf("List (backward): ");
printListBackward(list);
break;
case 8:
freeList(list);
exit(0);
default:
printf("Invalid choice! Please try again.\n");
}
}
return 0;
}
C++
cpp
#include <iostream>
// 定义双向链表节点结构
class Node {
public:
int data;
Node* prev;
Node* next;
Node(int val) : data(val), prev(nullptr), next(nullptr) {}
};
// 定义双向链表类
class DoublyLinkedList {
public:
Node* head;
DoublyLinkedList() : head(nullptr) {}
// 插入节点到链表尾部
void insertAtEnd(int val) {
Node* newNode = new Node(val);
if (head == nullptr) {
head = newNode;
} else {
Node* current = head;
while (current->next != nullptr) {
current = current->next;
}
current->next = newNode;
newNode->prev = current;
}
}
// 删除节点
void deleteNode(int val) {
if (head == nullptr) {
return; // 空链表,无需删除
}
Node* current = head;
while (current != nullptr && current->data != val) {
current = current->next;
}
if (current == nullptr) {
return; // 未找到匹配的节点
}
if (current->prev != nullptr) {
current->prev->next = current->next;
} else {
head = current->next;
}
if (current->next != nullptr) {
current->next->prev = current->prev;
}
delete current;
}
// 查找节点
Node* searchNode(int val) {
Node* current = head;
while (current != nullptr) {
if (current->data == val) {
return current; // 找到匹配的节点
}
current = current->next;
}
return nullptr; // 未找到匹配的节点
}
// 修改节点的数据
void modifyNode(int oldVal, int newVal) {
Node* nodeToModify = searchNode(oldVal);
if (nodeToModify != nullptr) {
nodeToModify->data = newVal; // 修改节点的数据
}
}
// 打印链表
void printList() {
Node* current = head;
while (current != nullptr) {
std::cout << current->data << " <-> ";
current = current->next;
}
std::cout << "nullptr" << std::endl;
}
// 释放链表内存
~DoublyLinkedList() {
Node* current = head;
while (current != nullptr) {
Node* temp = current;
current = current->next;
delete temp;
}
}
};
int main() {
DoublyLinkedList list;
int choice, data, oldData, newData;
while (true) {
std::cout << "\nMenu:\n";
std::cout << "1. Insert at the end\n";
std::cout << "2. Delete node\n";
std::cout << "3. Search node\n";
std::cout << "4. Modify node\n";
std::cout << "5. Print list\n";
std::cout << "6. Exit\n";
std::cout << "Enter your choice: ";
std::cin >> choice;
switch (choice) {
case 1:
std::cout << "Enter data to insert: ";
std::cin >> data;
list.insertAtEnd(data);
break;
case 2:
std::cout << "Enter data to delete: ";
std::cin >> data;
list.deleteNode(data);
break;
case 3:
std::cout << "Enter data to search: ";
std::cin >> data;
if (list.searchNode(data) != nullptr) {
std::cout << "Found node with data " << data << std::endl;
} else {
std::cout << "Node with data " << data << " not found" << std::endl;
}
break;
case 4:
std::cout << "Enter data to modify: ";
std::cin >> oldData;
std::cout << "Enter new data: ";
std::cin >> newData;
list.modifyNode(oldData, newData);
break;
case 5:
std::cout << "List: ";
list.printList();
break;
case 6:
return 0;
default:
std::cout << "Invalid choice! Please try again." << std::endl;
}
}
return 0;
}