光伏发电预测(GRU模型,Python代码)

运行效果:光伏发电预测(GRU模型,Python代码)_哔哩哔哩_bilibili

所有库的版本:

1.数据集(连续10年不间断采集三个光伏电站的发电量及天气情况,每隔半个小时采集一次信息,因此,一共有175296行数据),数据由威普罗有限公司(NYSE:WIT,BSE:507685,NSE:WIPRO)收集

开始位置(2009年1月1日0时0分开始开始)

截止位置(2018年12月31日23点30分结束)

第一行标签解读:

|------|-------|-----|------|--------|--------------|--------------|--------------|------------|-----------|-------------|----------|-------------------|--------------------|--------------------|----------------|------------|-----------|
| Year | Month | Day | Hour | Minute | Clearsky DHI | Clearsky DNI | Clearsky GHI | Cloud Type | Dew Point | Temperature | Pressure | Relative Humidity | Solar Zenith Angle | Precipitable Water | Wind Direction | Wind Speed | Fill Flag |

数据属性: 'Year', 'Month', 'Day', 'Hour', 'Minute'这些是时间。

标签列:

'Clearsky DHI',和 'Clearsky DNI', 'Clearsky GHI'分别为是三个光伏电站的表示。

特征列:Cloud Type Dew Point Temperature Pressure Relative Humidity Solar Zenith Angle Precipitable Water Wind Direction Wind Speed Fill Flag

中文:云类型 露点 温度 压力 相对湿度 太阳天顶角 可降水水分 风向 风速 标志

2.模型(训练集与测试比例为4:1)

3.运行效果

第一个光伏电站的测试集预测值与真实值

MSE:3.5295867391703615

第二个光伏电站的测试集预测值与真实值

MSE:11.993229305492198

第三个光伏电站的测试集预测值与真实值

MSE: 12.992957513834341

对项目感兴趣的,可以关注最后一行

复制代码
import pandas as pd
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
from tensorflow.keras import optimizers
#数据集:https://mbd.pub/o/bread/mbd-ZZWUkphx
相关推荐
美狐美颜sdk2 分钟前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程26 分钟前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li28 分钟前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝33 分钟前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion2 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周3 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享4 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜4 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿4 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_4 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习