JAVA练习百题之求矩阵对角线之和

题目:求一个3*3矩阵对角线元素之和

程序分析

求一个3x3矩阵的对角线元素之和,我们需要将矩阵的左上到右下以及左下到右上两条对角线上的元素相加。

一个3x3矩阵如下所示:

复制代码
1  2  3
4  5  6
7  8  9

左上到右下的对角线元素和为1 + 5 + 9 = 15,左下到右上的对角线元素和为7 + 5 + 3 = 15。

下面我们将使用三种不同的方法来实现这个任务,并分析它们的优缺点。

方法一:使用嵌套循环遍历矩阵

解题思路

我们可以使用嵌套循环遍历矩阵的元素,将左上到右下和左下到右上两条对角线上的元素相加。

实现代码

java 复制代码
public class Main {
    public static void main(String[] args) {
        int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
        int sum1 = 0, sum2 = 0;

        for (int i = 0; i < matrix.length; i++) {
            sum1 += matrix[i][i];            // 左上到右下的对角线
            sum2 += matrix[i][matrix.length - 1 - i]; // 左下到右上的对角线
        }

        System.out.println("Sum of diagonal elements (left to right): " + sum1);
        System.out.println("Sum of diagonal elements (right to left): " + sum2);
    }
}

优缺点

优点:

  • 简单易懂,容易实现。
  • 对于小规模矩阵,性能良好。

缺点:

  • 随着矩阵大小的增加,性能可能下降,时间复杂度为O(n)。

方法二:直接计算

解题思路

我们可以直接计算对角线元素之和,而不需要遍历整个矩阵。对于一个3x3矩阵,左上到右下的对角线元素之和为matrix[0][0] + matrix[1][1] + matrix[2][2],左下到右上的对角线元素之和为matrix[2][0] + matrix[1][1] + matrix[0][2]

实现代码

java 复制代码
public class Main {
    public static void main(String[] args) {
        int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
        int sum1 = matrix[0][0] + matrix[1][1] + matrix[2][2]; // 左上到右下的对角线
        int sum2 = matrix[2][0] + matrix[1][1] + matrix[0][2]; // 左下到右上的对角线

        System.out.println("Sum of diagonal elements (left to right): " + sum1);
        System.out.println("Sum of diagonal elements (right to left): " + sum2);
    }
}

优缺点

优点:

  • 直接计算,不需要遍历整个矩阵,性能较好。
  • 对于小规模矩阵,性能良好。

缺点:

  • 对于大规模矩阵,时间复杂度仍然为O(1),没有显著的性能提升。

方法三:使用循环

解题思路

我们可以使用循环来计算对角线元素之和,避免直接硬编码每个元素的位置。

实现代码

java 复制代码
public class Main {
    public static void main(String[] args) {
        int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
        int sum1 = 0, sum2 = 0;

        for (int i = 0; i < matrix.length; i++) {
            sum1 += matrix[i][i];            // 左上到右下的对角线
            sum2 += matrix[i][matrix.length - 1 - i]; // 左下到右上的对角线
        }

        System.out.println("Sum of diagonal elements (left to right): " + sum1);
        System.out.println("Sum of diagonal elements (right to left): " + sum2);
    }
}

优缺点

优点:

  • 使用循环计算,不需要硬编码每个元素的位置,具有一定的灵活性。
  • 对于小规模矩阵,性能良好。

缺点:

  • 对于大规模矩阵,时间复杂度仍然为O(n)。

总结

对于小规模矩阵,三种方法的性能都较好,且实现都相对简单。方法一和方法三具有一定的灵活性,可以用于不同大小的矩阵,但时间复杂度为O(n)。方法二直接计算,性能也较好,但不具备灵活性。

综合考虑,如果只处理小规模矩阵,方法一或方法三都可以选择,取决于个人喜好。如果需要处理大规模矩阵,方法二是一个更好的选择,因为它的时间复杂度是常数级的,不受矩阵大小的影响。

相关推荐
微风中的麦穗3 小时前
【MATLAB】MATLAB R2025a 详细下载安装图文指南:下一代科学计算与工程仿真平台
开发语言·matlab·开发工具·工程仿真·matlab r2025a·matlab r2025·科学计算与工程仿真
2601_949146534 小时前
C语言语音通知API示例代码:基于标准C的语音接口开发与底层调用实践
c语言·开发语言
开源技术4 小时前
Python Pillow 优化,打开和保存速度最快提高14倍
开发语言·python·pillow
学嵌入式的小杨同学4 小时前
从零打造 Linux 终端 MP3 播放器!用 C 语言实现音乐自由
linux·c语言·开发语言·前端·vscode·ci/cd·vim
毕设源码-朱学姐4 小时前
【开题答辩全过程】以 基于JavaWeb的网上家具商城设计与实现为例,包含答辩的问题和答案
java
mftang5 小时前
Python 字符串拼接成字节详解
开发语言·python
jasligea6 小时前
构建个人智能助手
开发语言·python·自然语言处理
kokunka6 小时前
【源码+注释】纯C++小游戏开发之射击小球游戏
开发语言·c++·游戏
C雨后彩虹6 小时前
CAS与其他并发方案的对比及面试常见问题
java·面试·cas·同步·异步·
云栖梦泽7 小时前
易语言开发从入门到精通:补充篇·网络编程进阶+实用爬虫开发·API集成·代理IP配置·异步请求·防封禁优化
开发语言